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ZOLL MANIFOLDS AND COMPLEX SURFACES

CLAUDE LEBRUN & L.J. MASON

Abstract
We classify compact surfaces with torsion-free affine connections for which
every geodesic is a simple closed curve. In the process, we obtain completely
new proofs of all the major results [4] concerning the Riemannian case. In
contrast to previous work, our approach is twistor-theoretic, and depends
fundamentally on the fact that, up to biholomorphism, there is only one
complex structure on CP2.

1. Introduction

A Zoll metric on a smooth manifold M is a Riemannian metric g
whose geodesics are all simple closed curves of equal length. This ter-
minology [15] celebrates Otto Zoll’s (now century-old) discovery [34]
that S2 admits many such metrics besides the obvious metrics of con-
stant curvature [4]. Indeed, in terms of cylindrical coordinates (z, θ) ∈
[−1, 1]× [0, 2π],

g =
[1 + f(z)]2

1− z2
dz2 + (1− z2)dθ2(1)

defines a Zoll metric on S2 for any smooth odd function

f : [−1, 1]→ (−1, 1), f(−z) = −f(z)

which vanishes at the end-points of the interval. A formal perturba-
tion argument of Funk [12] later indicated that, modulo isometries and
rescalings, the general Zoll metric on S2 depends on one odd function
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f : S2 → R. This formal calculation was later turned into a theorem
by Guillemin [15], whose proof depends, e.g., on an implicit function
theorem of Nash-Moser type. Because the function f is required to
satisfy f(−
x) = −f(
x), however, these constructions never give rise
to nonstandard Zoll metrics on RP

2. Indeed, the so-called Blaschke
conjecture, proved by Leon Green [13], asserts that, up to isometries
and rescaling, the only Zoll metric on RP

2 is the standard one. For an
outstanding survey of these results, as well as an exploration of their
higher-dimensional Riemannian generalizations, see [4].

The aims of the present article are twofold. First of all, instead
of limiting ourselves to the study of Riemannian metrics, we will more
generally consider torsion-free affine connections ∇, and ask how many
such connections on a given manifold M have the property that all of
their geodesics are simple closed curves. In order to make this a sensible
problem, however, one must first observe that for any 1-form β on M ,
the torsion-free affine connection ∇̂ defined by

∇̂uv = ∇uv + β(u)v + β(v)u

has exactly the same unparameterized geodesics as the connection ∇;
two connections related in this manner are said to be projectively equiv-
alent, and obviously one should therefore only try to classify such con-
nections modulo projective equivalence. In this rather general setting,
our methods will allow us to obtain results very much like the classical
Riemannian results alluded to above. Indeed, in §2, we begin by showing
that the only compact surfaces which admit Zoll projective connections
are S2 and RP

2. In §3, we then go on to show that, modulo diffeomor-
phisms, there is only one such projective class of connections on RP

2.
Finally, in §4, we prove that there is a nontrivial moduli space of such
projective classes on S2, locally parameterized by the space of vector
fields on RP

2.
But even in the Riemannian case, we seem to have something fun-

damentally new to contribute to the subject, as our proofs rest on
foundations completely different from those used by our predecessors.
Blaschke’s unsuccessful approach to the problem of classifying Zoll met-
rics on RP

2 amounted to a direct attempt to identify the space of all
geodesics with the standard dual projective plane RP

2∗, the points of
which which are by definition the real projective lines RP

1 in RP
2. The

essence of our method is instead to use complex, rather than real, projec-
tive geometry to solve the problem. Indeed, we will construct a complex
2-manifold from any given Zoll structure, modeled on the dual complex
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projective plane CP
∗
2. The punch line of the proof is then that, up to

biholomorphism, there is [3, 33] only one complex structure on CP2.
Our proof of the generalized Blaschke conjecture then proceeds by rec-
ognizing the points of RP

2 as the set of those complex projective lines
CP1 in this CP2 which are invariant under the action of a certain anti-
holomorphic involution. By contrast, the flexibility of Zoll structures
on S2 arises because the points in this case are instead represented by
holomorphic disks with boundary on a totally real embedding of RP

2 in
CP2; deformations of this embedding then correspond to deformations
of the Zoll structure. In this way, we are not only able to construct the
general small deformation of the standard Zoll structure without re-
course to Nash-Moser, but, more importantly, we are also able to glean
a significant amount of information regarding arbitrary Zoll structures,
even when they are quite far from the model case.

Finally, by way of an appendix, this article ends where it began, with
a discussion of the axisymmetric case. After all, since we have chosen to
generalize Zoll’s problem by focusing on projective structures, it is only
fitting that we should also generalize Zoll’s construction by writing down
all the axisymmetric Zoll projective structures on S2 in closed form. In
the process, we are able to show how the conceptual framework used in
§4 can be implemented in concrete, calculational terms. We hope that
our discussion of this special case will not only help clarify our general
approach, but also make it seem all the more compelling.

2. Zoll projective structures

We begin by recalling the notion [27] of projective equivalence of
affine connections.

Definition 2.1. Two torsion-free affine connections ∇ and ∇̂ on a
manifold M are said to be projectively equivalent if they have the same
geodesics, considered as unparameterized curves.

This condition may be re-expressed as the requirement that

∇̂vv ∝ v ⇐⇒ ∇vv ∝ v.

We therefore have [27]:

Proposition 2.2. Two Ck torsion-free affine connections ∇ and ∇̂
are projectively equivalent iff

∇̂uv = ∇uv + β(u)v + β(v)u
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for some Ck 1-form β.

Here a connection is said to be of differentiability class Ck with
respect to a fixed Ck+2 structure if the covariant derivative of any Ck+1

vector field is a Ck tensor field; this is equivalent to requiring that the
Christoffel symbols

Γj
k� =

〈
dxj ,∇ ∂

∂xk

∂

∂x�

〉
are all Ck functions in any admissible local coordinate system. We also
note, in passing, that the torsion-free condition employed here can been
imposed without any loss of generality; given an arbitrary affine connec-
tion, one can construct a unique torsion-free connection with precisely
the same parameterized geodesics by replacing the Christoffel symbols
with their symmetrizations:

Γj
k� � Γ̂j

k� =
1
2

(
Γj

k� + Γj
�k

)
.

Definition 2.3. A Ck projective structure on a smooth manifold
is the projective equivalence class [∇] of some torsion-free Ck affine
connection ∇.

By Definition 2.1, a projective structure [∇] on M defines a cer-
tain family of geodesics, which are to be thought of as abstract im-
mersed curves in M , without preferred parameterizations; conversely,
this system of geodesics uniquely characterizes the projective structure
in question.

In this paper, we will be interested in projective structures for which
every geodesic is a simple closed curve.

Definition 2.4. Let ∇ be a C1 torsion-free affine connection on a
smooth manifold M . We will say that the projective equivalence class
[∇] of ∇ is a Zoll projective structure if the image C of any maximal
geodesic of ∇ is an embedded circle S1 ⊂M .

If c : (a, b) � M is any immersed curve, its derivative dc/dt is
nonzero at every point, so that [dc/dt] is a well-defined element of the
projectivized tangent bundle

PTM = (TM − 0M )/R×;

thus t �→ [dc/dt] defines a curve c̃ : R → PTM , called the canonical
lift of c. Given a Ck Zoll projective structure [∇] on M , the canonical
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lifts of its geodesics give us a Ck foliation F of PTM by circles. Let N
denote the leaf space of this foliation.

Definition 2.5. Let (M, [∇]) be an n-manifold with Ck Zoll projec-
tive structure. We will say that [∇] is tame if the corresponding foliation
F of PTM by lifted geodesics is locally trivial, in the sense that each leaf
has a neighborhood which is Ck diffeomorphic to R

2n−2 × S1 in such a
manner that every leaf corresponds to a circle of the form {pt} × S1.

These local trivializations give N the structure of a Ck (2n − 2)-
manifold in a canonical manner, making the quotient map ν : PTM →
N into a Ck submersion. We will call the surface N the space of (undi-
rected) geodesics of the tame Zoll projective structure [∇]. The situation
is encapsulated by a diagram

PTM

M N

νµ
❏

❏
❏

❏❏

✡
✡

✡
✡✡✢

which we shall refer to as the (real) double fibration of [∇]. Here µ :
PTM → M of course denotes the bundle projection. Notice that, by
construction, the tangent spaces of the fibers of µ and ν are everywhere
linearly independent:

(kerµ∗) ∩ (ker ν∗) = 0.

Moreover, the restriction of ν to any fiber of µ gives us an embedding
RP

n−1 ↪→ N .
Fortunately, as we will show in Theorem 2.16 below, this desirable

picture applies to every compact Zoll surface. A key step in this direc-
tion is the following:

Proposition 2.6. Any Zoll projective structure [∇] on a compact
orientable surface M2 is tame.

Proof. Because M is assumed to be a compact surface, PTM is
a compact 3-manifold, and the Zoll projective structure [∇] gives us
a foliation F of PTM by circles. However, a theorem of Epstein [10]
asserts that any foliation of a compact 3-manifold by circles is a Seifert
fibration. Thus any leaf of F has a basis of neighborhoods modeled on

(C× S1)/Zm,
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where the Zm action on C × S1 ⊂ C
2 is generated by (z1, z2) �→

(e2πi�/mz1, e
2πi/mz2), for some integer �. All we therefore need to show

is that no leaf is nontrivially covered by nearby leaves.
Now, because we have assumed that M is orientable, any geodesic

circle C has a tubular neighborhood diffeomorphic to the cylinder S1×R.
Moreover, by Epstein’s result, the lift of C to PTM has a standard
neighborhood whose projection to M is contained in the given cylindri-
cal neighborhood. Thus, any geodesic circle C′ with initial point and
tangent sufficiently close to those of C will remain within our cylindrical
neighborhood, and indeed will do so in such a manner that the projec-
tion C′ → C induced by S1×R → S1 has nonzero derivative everywhere,
and so will be a covering map. However, our tubular neighborhood
S1 × R can be identified with R

2 − 0 in such a manner that C becomes
the unit circle, and the degree of the covering becomes the winding
number of C′ around the origin. But since C′ has been transformed into
an embedded curve in the plane, the Jordan curve theorem tells us that
its winding number around the origin has absolute value ≤ 1. Thus the
covering map in question must have degree 1. The associated foliation
F of PTM is therefore trivial in a neighborhood of the lift of C. q.e.d.

Next, we wish to determine precisely which compact surfaces admit
Zoll projective structures. Our solution to this problem begins with the
following simple observation:

Lemma 2.7. Let [∇] be a tame Zoll projective structure on an n-
manifold M . Let � : M̃ →M be the universal cover of M . Then [�∗∇]
is a tame Zoll projective structure on M̃ .

Proof. If (M, [∇]) is a tame Zoll manifold, all the lifted geodesics are
freely homotopic embedded circles in PTM ; this is true because PTM
is connected, and is the union of ‘trivializing’ open sets for the foliation
F , in which all the circular leaves are freely homotopic. Hence all the
geodesic circles in M are freely homotopic. Moreover, by considering
the geodesic circles through a given point p ∈ M , one obtains a base-
point homotopy between any geodesic circle C ⊂ M and its reverse-
parameterized version C. Hence C either represents an element of order
1 or 2 in π1(M,p). Thus either C or a 2-fold cover Ĉ → C lifts to the
universal cover M̃ as an embedded circle, and this circle is geodesic with
respect to the pull-back connection �∗∇. Acting on each such lift by
the action of π1(M), we thus see that every geodesic of (M̃, [�∗∇]) is
an embedded circle, and [�∗∇] is therefore a Zoll projective structure
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on M̃ .
It remains to show that [�∗∇] is tame. To see this, first observe

that the foliation F of PTM pulls back to the foliation F̂ of PTM̃ given
by lifted geodesics of [�∗∇]. Moreover, the induced map �̂ : PTM̃ →
PTM is a covering map. If U ⊂ PTM is any connected open set, and if
Û ⊂ PTM̃ is any connected component of �̂−1(U), then �̂|Û : Û → U
is also a covering map. But if U is a trivializing neighborhood for F ,
then the finite cover Û of U ≈ S1×R

2n−2 will therefore provide a local
trivialization of F̂ . Since PTM̃ is covered by such neighborhoods, this
shows that (M̃, [�∗∇]) is tame, as claimed. q.e.d.

This leads to constraints on the topology of M .

Lemma 2.8. Suppose that the n-manifold M admits a tame Zoll
projective structure [∇]. ThenM is compact, and has finite fundamental
group. Moreover, every two points x and x′ ofM are joined by a geodesic
of ∇.

Proof. Choose an arbitrary point x ∈ M . In PTM , consider the
union

X̂ = ν−1
(
ν
[
µ−1(x)

])
of the lifts of geodesics through x. Then X̂ is a compact differentiable
n-manifold. But since µ−1(x) ⊂ X̂ is an RP

n−1 whose normal bundle
is the universal line bundle, X̂ may be blown down along µ−1(x) to
produce a new compact differentiable n-manifold1 X. Moreover, µ
induces a differentiable map ℘ : X → M . Indeed, if x̌ ∈ X denotes the
point obtained by blowing down µ−1(x), then, in a neighborhood of x̌,
℘ is modeled on the exponential map of ∇ near 0 ∈ TxM . In particular,
x̌ is a regular point of ℘. But, because [∇] is Zoll, a geodesic circle can
pass through x only once, so it follows that ℘−1(x) = {x̌}. Thus x is a
regular value of the proper map ℘ with #℘−1(x) = 1. This shows that
the mod-2 degree of the proper map ℘ is 1 ∈ Z2. In particular, ℘ is
onto, and M = ℘(X) is therefore compact. The very definition of the
surjective map ℘ now tells us that any point x′ of M is joined to x by
some geodesic of ∇.

Since the universal cover M̃ also admits a tame Zoll projective struc-
ture by Lemma 2.7, the above argument now also shows that M̃ is com-
pact. Hence the universal covering map � : M̃ → M is finite-to-one,
and π1(M) is therefore finite, as claimed. q.e.d.

1We remark in passing that it is not difficult to show that X is always diffeomor-
phic to RP

n.
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Applying this to the two-dimensional case, we obtain the following:

Proposition 2.9. A compact surface M2 admits a Zoll projective
structure iff M is diffeomorphic to either S2 or RP

2.

Proof. By pulling the projective structure back to a double cover M̃
of M if necessary, we obtain a Zoll projective structure on a compact
orientable surface M̃ , and this pulled-back structure is then tame by
Proposition 2.6. This forces M̃ , and henceM , to have finite fundamental
group by Lemma 2.8. The classification of compact surfaces then tells us
thatM must be diffeomorphic to either S2 or RP

2. Conversely, the Levi-
Civita connection � of the standard, homogeneous metric determines a
Zoll projective structure [�] on either of these spaces. q.e.d.

The following information thus becomes pertinent to our discussion:

Lemma 2.10. If M =S2, |π1(PTM)|=4. If M =RP
2, |π1(PTM)|

= 8.

Proof. The unit tangent bundle of S2 may be identified with SO(3)
by thinking of the first column of an orthogonal matrix as a point of
S2 ⊂ R

3, and the second column as a unit tangent vector at that point.
Thus PTS2 may be identified with SO(3)/Z2, where the Z2 action is
generated by left multiplication by 1 0 0

0 −1 0
0 0 −1

 .
Lifting to the universal cover Sp(1) = S3 ⊂ H

× of SO(3), we thus have
PTS2 = Sp(1)/Z4, where the Z4 is generated by i. Hence π1(PTS2) ∼=
Z4 has order 4, as claimed.

The antipodal map on S2 acts on the unit tangent bundle via −1 0 0
0 −1 0
0 0 1

 ∈ SO(3) ,

and this lifts to Sp(1) as ±k. Thus PTRP
2 = Sp(1)/{±1,±i,±j,±k},

and hence π1(PTRP
2) ∼= {±1,±i,±j,±k} has order 8, as claimed. q.e.d.

In particular, π1(PTM2) must be finite. Hence:

Proposition 2.11. Let (M, [∇]) be a compact surface with tame
Zoll projective structure. Then its space N of unoriented geodesics is
diffeomorphic to RP

2.
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Proof. The group homomorphism

ν� : π1(PTM)→ π1(N)

induced by the fibration ν is surjective, since each fiber of ν is path
connected. But Proposition 2.9 and Lemma 2.10 together tell us that
PTM has finite fundamental group. Hence π1(N) is finite, and the clas-
sification of 2-manifolds therefore tells us that N must be diffeomorphic
to either S2 or RP

2. But we also know that N is not simply connected,
since it has a nontrivial cover Ñ , given by the space of directed geodesics
of [∇]. This shows that N ≈ RP

2, as claimed. q.e.d.

Next, we would like to understand the topological structure of the
S1-bundle

ν : PTM → N.

Our method will simultaneously allow us to analyze the conjugate points
of the projective structure [∇]. Let us thus begin by recalling the notion
of a Jacobi field.

If ∇ is a torsion-free connection on a manifold M , and if c : (a, b)→
M is an affinely parameterized geodesic of ∇, then a Jacobi field along
c is by definition a vector field y ∈ Γ(c∗TM) along c which satisfies the
linear differential equation

∇v∇vy = Rvyv,

where R denotes the curvature tensor of ∇, and where the standard
tangent vector

v =
dc

dt

of our parameterized geodesic satisfies the auto-parallel condition

∇vv = 0.(2)

It is not difficult to see that y is a Jacobi field iff it is locally the joining
vector field for a 1-parameter family of geodesics of ∇. More precisely,
for any [a′, b′] ⊂ (a, b), there is an ε > 0 and a differentiable map

ĉ : [a′, b′]× (−ε, ε) → M

(t, u) �→ ĉ(t, u)

with ĉ(t, 0) = c(t), such that, setting

ṽ =
∂ĉ

∂t
, ỹ =

∂ĉ

∂u
,
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one has
∇ṽṽ = 0

and
ỹ|u=0 = y.

The notion of a Jacobi field is not actually projectively invariant,
but there is a closely related concept which is.

Definition 2.12. Let [∇] be a C1 projective connection on M , and
let C � M be any geodesic of [∇]. Then a section Y of the normal
bundle TM/TC of C will be called a Jacobi class on C iff, near any
given point p ∈ C,

Y ≡ y mod TC

for some locally defined Jacobi field y.

In other words, Y is a Jacobi class iff it locally joins infinitesimally
separated unparameterized geodesics. Thought of this way, it thus be-
comes immediately apparent that the notion of Jacobi class is projec-
tively invariant.

Definition 2.13. Let [∇] be a C1 projective connection on M ,
and let C � M be any geodesic of [∇]. We will say that two points
p, q ∈ C are conjugate along C iff there is a Jacobi class Y on C with
Y(p) = Y(q) = 0.

Very roughly, conjugate points are thus the places where two in-
finitesimally separated geodesics of [∇] meet.

Let us now make all of this more explicit in the special case of
dimM = 2. If C � M is a geodesic of an affine connection ∇ on a
surface M , the normal bundle TM/TC is a real line bundle E → C.
Since TC ⊂ TM is parallel, ∇ defines a connection D on E. Let us take
an affine parameterization c : (a, b)→ C, so that v = dc/dt satisfies (2).
Let us then trivialize c∗E → (a, b) by means of [e], where e �∝ v is a
generic parallel section of c∗TM , and where the brackets [ · ] indicate
the equivalence class mod TC. Defining κ : (a, b)→ R by

κ = r(v,v),

where rab = Rc
acb is the Ricci tensor of ∇, we then have

Rvev ≡ −κe mod v,
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so that y(t)e ≡ y mod TC for some Jacobi field y iff y : (a, b) → R

satisfies the second order linear differential equation

d2y

dt2
+ κy = 0.(3)

More abstractly, (3) becomes

DvDvY+ r(v,v)Y = 0(4)

in terms of the connection D induced on the normal bundle E, and this
in turn generalizes to becomes

DvDvY−D∇vvY+ r(v,v)Y = 0(5)

if we drop the auto-parallel condition (2) on our tangent field v. Let us
remark that if ∇ is replaced by the projectively equivalent connection
∇̂ defined by

∇̂uv = ∇uv + β(u)v + β(v)u,

one then has

D̂vD̂vY = DvDvY+ 2β(v)DvY+
[
vβ(v) + β(v)2

]
Y,

D̂∇̂vvY = D∇vvY+ 2β(v)DvY+
[
β(∇vv) + 2β(v)2

]
Y,

r̂(v,v) = r(v,v) + (n− 1)
[
β(∇vv)− vβ(v) + β(v)2

]
,

so that blind, brute-force calculation does indeed show that (5) is pro-
jectively invariant in dimension n = 2, as previously deduced by pure
thought.

Now the vector space of solutions of (3) is two dimensional, corre-
sponding to choices of y and y′ at an arbitrary base-point of the interval
(a, b). Let {y1, y2} be an arbitrary basis for this solution space, and con-
sider the Wronskian

W (t) =
∣∣∣∣ y1(t) y′1(t)
y2(t) y′2(t)

∣∣∣∣ = y1y′2 − y2y′1.
The differential equation (3) then tells us that

dW

dt
= y′1y

′
2 + y1y

′′
2 − y′2y′1 − y2y′′1

= y1(−κy2)− y2(−κy1) = 0,
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so thatW (t) is constant. Moreover, this constant must be nonzero, since
y1 and y2 have linearly independent initial values at the base-point. The
map

φ : (a, b) −→ RP
1

t �→ [y1(t) : y2(t)]

is therefore well-defined for all t, since y1 and y2 cannot simultaneous
vanish. Moreover, φ is an immersion, since

d

dt

(
y1
y2

)
=
W

y2
2

and
d

dt

(
y2
y1

)
= −W

y2
1

are never zero. Geometrically, φmay be interpreted as sending x ∈ (a, b)
to the set of Jacobi classes Y with Y(x) = 0, since a Jacobi class

y(t) = λ2y1(t)− λ1y2(t) �≡ 0

vanishes at x iff [λ1 : λ2] = φ(x) := [y1(x) : y2(x)]. In particular, two
points are conjugate along c [(a, b)] iff they have the same image under
φ.

For a tame Ck Zoll projective structure [∇] on a surface M2, there
are two linearly independent Jacobi classes defined along the entirety
of any closed geodesic C; indeed, if y ∈ N represents C in the space
of geodesics, TyN is naturally in one-to-one correspondence with the
space of Jacobi classes along C via µ∗ ◦ (ν∗)−1. The above construction
thus gives us a Ck+1 covering map φ : C → RP

1 for every geometrically
closed geodesic C, and this map is uniquely defined modulo the action of
SL(2,R) on RP

1. The order of the covering φ will be called the conjugacy
number of the geodesic, since it exactly counts how many points of C

are conjugate to x ∈ C, of course including x itself. We will now see
that this number actually has a rather deeper meaning.

Proposition 2.14. Let [∇] be a tame Ck Zoll projective connection,
1 ≤ k ≤ ∞, on a compact 2-manifold M , and consider the Ck−1 map

ϕ : PTM −→ PTN

z �→ ν∗ (kerµ∗z) ,

where µ∗ and ν∗ denote the derivatives of µ and ν, respectively. Then ϕ
is a covering map. Moreover, the order of the covering ϕ exactly equals
the conjugacy number of any closed geodesic C ⊂ M . In particular, all
the geodesics of [∇] have the same conjugacy number.
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Proof. Let us first notice that we have a commutative diagram

PTM
ϕ

N

PTN

ν π
❏

❏
❏

❏❏

✡
✡

✡
✡✡✢

✲

where π denotes the relevant canonical projection. Moreover, since N
is by definition the leaf space of the foliation F , we also know that ϕ
maps each leaf of F to a different fiber of π.

Now the tangent space of N at any point can be canonically identi-
fied with the space of Jacobi classes on the corresponding geodesic inM .
With this identification, ϕ then sends a point of a geodesic C (identified,
by lifting, with a leaf of F) to the set of Jacobi classes which vanish at
that point. In other words, on each leaf of F , thought of as a geodesic
C ⊂ M of [∇], ϕ precisely coincides with the map φ described above.
This shows that ϕ immerses each leaf in PTN as a fiber of π. Since ν is
a submersion, it follows, for k ≥ 2, that ϕ∗ is injective, and hence that
ϕ is a local diffeomorphism; for k = 1, one instead may observe that ϕ
must be injective on some neighborhood of any point, and so must be a
local homeomorphism by the open mapping theorem. But since PTM
is compact, this implies that ϕ is a covering map. Moreover, the order
of this covering is precisely the number of points on a leaf of F which
are sent to the same point of a fiber π. This shows that the order of
covering ϕ is precisely the conjugacy number of any geodesic of [∇].

q.e.d.

If X is any manifold, let us use STX to denote the sphere bundle
(TX − 0X)/R+. In other words, STX may be thought of as the set of
unit tangent vectors for an arbitrary Riemannian metric on X.

Theorem 2.15. If [∇] is any Ck Zoll projective structure, k ≥ 1,
on M ≈ S2, its conjugacy number is two, and there is a Ck−1 diffeo-
morphism PTM ≈ STN such that ν becomes the canonical projection
STN → N . Moreover, the real line bundle kerµ∗ over PTM is trivial.

Proof. Let us first recall that Proposition 2.6 tells us that [∇] is
tame. But now, with a nod to Lemma 2.10, we see that the covering
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map ϕ : PTM → PTN has order

|π1(PTN)|
|π1(PTM)| =

|π1(PTRP
2)|

|π1(PTS2)| =
8
4
= 2,

and the conjugacy number is therefore 2, by Proposition 2.14.
Now notice that the real line bundle kerµ∗ over PTS2 is trivial.

Indeed, after the choice of a metric and orientation, PTS2 can be iden-
tified with the SO(2) bundle of oriented orthonormal frames divided
by 〈−1〉 ⊂ SO(2), and carries an induced so(2) action which trivial-
izes kerµ∗. Let v denote the vector field which generates this action.
Imitating our construction of ϕ, we now obtain a diagram

PTM
ϕ̂

N

STN

ν π̂
❏

❏
❏

❏❏

✡
✡

✡
✡✡✢

✲

by defining ϕ̂(z) = R
+ν∗(vz); here π̂ : STN → N of course denotes the

canonical projection. Now ϕ̂ is a covering map, since it lifts ϕ. But

|π1(STN)|
|π1(PTM)| =

|π1(STRP
2)|

|π1(PTS2)| =
4
4
= 1,

so it now follows that ϕ̂ is a homeomorphism if k = 1, and a diffeomor-
phism if k ≥ 2. q.e.d.

This finally allows us to definitively dispense with the tame condi-
tion.

Theorem 2.16. Any C1 Zoll projective structure on a compact
surface M2 is tame.

Proof. Proposition 2.6 covers the orientable case, so we may hence-
forth assume thatM is nonorientable. Proposition 2.9 then tells us that
M is diffeomorphic to RP

2, so we have M = M̃/〈a〉, where M̃ ≈ S2,
and where a : M̃ → M̃ corresponds to the antipodal map on S2. Any
Zoll projective structure onM then pulls back to a tame Zoll projective
structure on M̃ , each of whose geodesics is sent to some geodesic by
a. If Ñ ≈ RP

2 is the space of unoriented geodesics of M̃ , then a thus
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induces a diffeomorphism â : Ñ → Ñ . We claim that â is in fact the
identity.

Suppose not. Then â generates a nontrivial Z2 action. But any
action by a finite group of diffeomorphisms is isometric with respect
to some Riemannian metric, and so has fixed-point set consisting of a
disjoint union of closed submanifolds. In our case, the fixed-point set
would be a finite union of disjoint circles and points. Moreover, the
quotient Ñ/Z2 would have Euler characteristic

χ(Ñ/Z2) =
χ(Ñ) +m

2
=

1 +m
2

,

where m is the number of isolated fixed points. Since the Euler char-
acteristic is an integer, this shows that â has at least one isolated fixed
point. At such an isolated fixed point, the derivative of â must be −1,
as this is the unique order-2 element of O(2) with trivial +1-eigenspace.

Back in M̃ , this fixed point would correspond to a geodesic circle
C with a(C) = C, along which a∗ induced the action Y �→ −Y on the
vector space of Jacobi classes. In particular, the zero locus of a Jacobi
class Y �≡ 0 would necessarily be sent to itself by a∗. But since M̃
has conjugacy number 2 by Theorem 2.15, and since a has no fixed
points, this means that a acts on C by sending each point to the unique
other point to which it is conjugate. Now trivialize the normal bundle
E = TM̃/TC, so that we can talk about whether a nonzero element of
L is ‘positive’ or ‘negative’. Then, since any Jacobi class Y �≡ 0 meets
the zero section of E transversely in exactly 2 points, the subsets of C

given by Y > 0 and Y < 0 are necessarily intervals, and are necessarily
interchanged by the fixed-point-free map a. But since Y �→ −Y under
a∗, this shows that a∗ acts on the normal bundle E in an orientation-
preserving manner. Moreover, a∗ is also orientation-preserving on TC,
since a : C → C has no fixed point. Hence a acts on M̃ in an orientation-
preserving manner — contradicting the fact that, by construction, a is
an orientation-reversing map!

This contradiction shows that â must be the identity on Ñ . Hence
a∗ induces an action on PTM̃ which sends each leaf to itself, and holon-
omy around any leaf in PTM is therefore trivial. Hence the given Zoll
projective structure on M ≈ RP

2 is tame, as claimed. q.e.d.

In particular, it now makes sense to talk about the conjugacy number
of any Zoll projective structure on RP

2.
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Theorem 2.17. If [∇] is any Ck Zoll projective structure, k ≥ 1,
on M ≈ RP

2, its conjugacy number is 1. Moreover, there is a Ck−1

diffeomorphism PTM ≈ PTN such that ν becomes the canonical projec-
tion PTN → N , and such that kerµ∗ → PTM becomes the ‘tautological’
real line bundle L → PTN , whose frame bundle bundle is the principal
R
×-bundle (TN − 0N )→ PTN .

Proof. Since [∇] is tame by Theorem 2.16, we are free to consider the
covering map ϕ : PTM → PTN of Proposition 2.14. By construction,
the tautological line bundle L → PTN then satisfies ϕ∗L = kerµ∗.
Since the order of this covering is

|π1(PTN)|
|π1(PTM)| =

|π1(PTRP
2)|

|π1(PTRP2)| = 1,

we conclude that ϕ is a homeomorphism, and the conjugacy number
is therefore 1 by Proposition 2.14. Moreover, the same argument also
shows that ϕ is actually a diffeomorphism if k ≥ 2. q.e.d.

Corollary 2.18. For any Zoll projective structure [∇] on M ≈
RP

2, any two distinct points are joined by a unique geodesic circle C.

Proof. As in the proof of Lemma 2.8, let

X̂ = ν−1
(
ν
[
µ−1(x)

])
be the union of the lifts of geodesics through x. Then X̂ is a compact
differentiable surface and may be blown down along µ−1(x) to produce
a new smooth compact surface X. Since X̂ is a circle bundle over the
circle �x = ν

[
µ−1(x)

]
, and since a neighborhood of µ−1(x) is a Möbius

band B, it follows that X contains a Möbius band B′ = X̂ − B, and
hence is not orientable.

On the other hand, Theorem 2.17 tells us that each geodesic in M
has conjugacy number 1, and hence no point x′ �= x is conjugate to
x along any geodesic. Hence the canonical projection X̂ → M is an
immersion away from µ−1(x), and the induced map ℘ : X → M is
therefore an immersion everywhere. Since X is compact, ℘ is therefore
a covering map. Since X is not simply connected and π1(M) = Z2, it
follows that ℘ is a one-to-one and onto. But, by the very definition of
℘, this means that there is one and only one geodesic between x and
any other point x′ �= x in M . q.e.d.



zoll manifolds and complex surfaces 469

Corollary 2.19. Let (M2, [∇]) be a compact surface with Zoll pro-
jective structure. Let C ⊂M be any geodesic circle. Then the following
conditions are equivalent:

• 〈w1(M), [C]〉 = 1 ∈ Z2;

• the conjugacy number of C is odd;

• M is not orientable;

• M is diffeomorphic to RP
2.

Proof. At points where a Jacobi class Y �≡ 0 vanishes along C, the co-
variant derivative DvY must be nonzero, since Y satisfies (3). Thus the
mod-2 reduction of the conjugacy number of C calculates 〈w1(E), [C]〉,
where E = TM/TC is the normal bundle, and this of course coincides
with 〈w1(M), [C]〉 := 〈w1(TM), [C]〉, since TC is trivial. But Theo-
rems 2.17 and 2.15 tell us that the only possible values of the conjugacy
number are 1 and 2, and that the value of the conjugacy number deter-
mines whether M is diffeomorphic to RP

2 or S2. q.e.d.

The same argument also yields the following:

Corollary 2.20. Let (M2, [∇]) be a compact surface with Zoll pro-
jective structure. Let C ⊂ M be a geodesic circle. Then the following
conditions are equivalent:

• 〈w1(M), [C]〉 = 0 ∈ Z2;

• the conjugacy number of C is even;

• M is orientable;

• M is diffeomorphic to S2.

Let us now take a moment to compare our definitions with those
previously used by others in the Riemannian context [4, 15].

Proposition 2.21. Let (M2, g) be a compact surface with Ck Rie-
mannian metric, 2 ≤ k ≤ ∞. Let � be the Levi-Civita connection of g.
Then [�] is a Ck−1 Zoll projective structure on M iff the geodesics of g
are all simple closed curves of equal length.

Proof. If [�] is a Zoll projective structure, Theorem 2.16 then tells us
it is tame, and its geodesic circles are therefore freely homotopic to one
another through geodesic circles. But the affinely parameterized closed
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geodesics of g are precisely those differentiable maps c : S1 →M which
are critical points of the energy functional

E(c) =
∫
S1

g(c′(t), c′(t))dt ;

thus the energy is necessarily constant for any 1-parameter family of
closed geodesics. This shows that the geodesic circles of g must all have
equal energy, and hence equal length. q.e.d.

We conclude this section with an aside which plays no rôle what-
soever in what follows, but which, in light of Proposition 2.21, has a
certain intrinsic interest. Given a Zoll projective structure [∇] on a
compact surface M , it is natural to ask whether there is a connection
∇ representing [∇] such that every affinely parameterized geodesic is
periodic. The answer is affirmative.

Proposition 2.22. If [∇] is any Zoll projective structure on a com-
pact surface M2, then there is a torsion-free affine connection ∇ ∈ [∇]
for which each affinely parameterized geodesic extends as a periodic func-
tion c : R →M .

Proof. If M = S2, let ω be an arbitrary area form on M , and let ∇
be [27] the unique connection in the equivalence class such that ∇ω = 0.
If c : [a, b] → M is an affine parameterization of a geodesic of ∇, with
c(b) = c(a) and c′(b) = λc′(a), then any parallel vector field e along c
must satisfy e(b) = λ−1e(a) mod c′. Now the Zoll condition guarantees
the existence of a two-parameter family of solutions of (4) which satisfy
the “periodicity” condition

Y|c(b) = Y|c(a), DY|c(b) = DY|c(a).

Every solution of (3) must therefore satisfy

y(b) = λy(a), y′(b) = λ2y′(a).

Hence the Wronskian W = y1y
′
2 − y2y′1 of two linearly independent

solutions of (3) must satisfy W (b) = λ3W (a). But W is constant!
Thus λ = 1, and the given geodesic is therefore periodic. But this
argument applies to any geodesic on M . Hence every geodesic of the
chosen connection ∇ is periodic, and the claim follows if M = S2.

The case of RP
2 now follows easily; one simply takes the area form

ω on S2 to be anti-invariant under the antipodal map a : S2 → S2,
and then notices that the corresponding connection ∇ then descends to
RP

2. q.e.d.
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3. The Blaschke conjecture revisited

If [∇] is a Zoll projective structure on a compact surface M , we saw
in §2 that its space of unoriented geodesics N is diffeomorphic to RP

2.
Now notice that N also comes equipped with a family

�x = ν[µ−1(x)]

of embedded circles �x ⊂ N , x ∈ M . (For any given x ∈ M , this is
to say that �x consists precisely of the geodesics passing through x.)
If we were simply given N and this family of curves, we could then
completely reconstruct the given projective structure on M . Indeed, M
could be redefined as the parameter space or ‘moduli space’ of these
curves �x, and the geodesics Cy ⊂ M would then become the set of
curves �x passing through some given point y ∈ N . The utility of this
point of view might seem to be rather questionable, however, as there
is no obvious geometric structure one might impose on N in order to
keep track of which embedded circles � ⊂ N are to be the elements of
the family {�x}x∈M . However, our main observation, extrapolated from
a twistor correspondence due to Hitchin [19] and the first author [20],
is that one can naturally keep track of these curves by ‘complexifying’
the picture, and embedding N in a complex 2-manifold N .

Let us suppose we are given a C2 Zoll projective structure [∇] on
M = RP

2. Consider the CP1-bundle

PTCM = (C⊗ TM − 0M ) /C×,

and observe that the circle bundle

PTM = (TM − 0M ) /R×

is a hypersurface in the 4-manifold PTCM . For brevity, we introduce
the notation

Z = PTCM, Z = PTM.

Because each fiber of PTCM has a canonical complex structure J‖, the
normal bundle of PTM ⊂ PTCM is just J‖(kerµ∗), where µ : PTM →
M is the bundle projection. Now recall that our Zoll projective structure
gives us a foliation F of PTM by circles, and the leaves of F are precisely
the fibers of a C2 submersion ν : PTM → N ≈ RP

2. Moreover, Theo-
rem 2.17 tells us that there is a C1 diffeomorphism ϕ : PTM → PTN
such that the real line bundle kerµ∗ becomes the pull-back ϕ∗L of the
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tautological line bundle L → PTN . The latter line bundle is by def-
inition a subbundle of π∗TN , where π : PTN → N is the canonical
projection; namely, for any nonzero vector v ∈ TyN , the fiber over
[v] ∈ PTN is L[v] = span(v) ⊂ TyN . In particular, there is a tauto-
logical C1 ‘blowing down’ map ψ : L→ TN which is a diffeomorphism
away from the zero section PTN of L, but collapses this zero section to
the zero section N of TN via π : PTN → N . On the other hand, the
tubular neighborhood theorem tells us that Z = PTM has a neighbor-
hood V̂ in Z = PTCM which is C∞ diffeomorphic to the total space of
J‖ kerµ∗, in such a manner that the derivative along Z is the identity.
Letting V denote the total space of TN = TRP

2, we then have a C1

map ψ̃ : V̂ → V which corresponds to ψ via our C1 diffeomorphism
J‖ kerµ∗ → L. We may now define a new C1 compact 4-manifold

N = U ∪
ψ̃
V

by gluing together U := Z −Z and V = TN via ψ̃. By construction, we
also have a C1 ‘blowing down’ map

Ψ : Z → N ,

given by the identity on U and by ψ̃ on V̂.
If we suppose that [∇] is Ck for k > 2, the above construction allows

us to impose a Ck−1 structure on N in such a manner that Ψ becomes a
Ck−1 map. While this will actually turn out to be technically useful, the
reader should be warned, however, that such a Ck−1 structure is in no
sense natural or canonical, because it depends on the (k − 1)-jet of our
identification of the tubular neighborhood V̂ with L→ PTN , and such
a choice is uniquely specified by the geometry only when k = 2; for this
reason, we will refer to such a choice as a provisional Ck−1 structure.
Fortunately, however, this apparent shortcoming will soon be remedied.
Indeed, the thrust of our argument is that that [∇] induces a certain
complex structure J on N , and so endows N with a canonical C∞

structure. In order to see this, we will proceed by first constructing a
certain involutive complex distributionD on PTCM , and then analyzing
its image under Ψ.

Since Z = PTCM , we have a bundle projection, which we will denote
by µ̂ : Z → M . The subbundle V = ker µ̂∗ ⊂ TZ will be called the
vertical subbundle. Now choose a connection ∇ representing the given
projective structure [∇], and let H ⊂ TZ be the horizontal subbundle,
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corresponding to parallel transport with respect to ∇, so that we have
a direct-sum decomposition

TZ = V ⊕H.

Complexifying these bundles, we thus have

TCZ = VC ⊕HC,

where TCZ = C⊗ TZ, etc. Notice that the derivative of the projection
also gives us a canonical isomorphism

µ̂∗ : HC

∼=−→ µ̂∗TCM.

Using this picture, we will now define two line subbundles

Lj ⊂ TCZ = C⊗ TZ, j = 1, 2.

To this end, let us first recall that each fiber of Z → M is a CP1, so
that we have a fiber-wise complex structure tensor

J‖ : V→ V, (J‖)2 = −1,

and we define L1 ⊂ VC to be the (−i)-eigenspace of J‖:

L1 = V0,1

J‖ .

On the other hand, each element of Z = PTCM may be identified with
a 1-dimensional complex-linear subspace of TCM , and this picture gives
us a tautological line subbundle L2 of HC

∼= µ̂∗TCM :

L2|[w] = (µ̂∗[w])
−1(span w).(6)

Set

D = L1 ⊕ L2 ⊂ TCZ.(7)

Then D is a C2 distribution of complex 2-planes on Z. We will now see
that D is involutive, in the sense that

[C1(D), C1(D)] ⊂ C0(D).

Moreover, D will turn out to be unchanged if we replace ∇ with a
projectively equivalent connection ∇̂.
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Indeed, let (x1, x2) : Ω→ R
2 be a local coordinate system on Ω ⊂M ,

and let

Γj
k� =

〈
dxj , ∇ ∂

∂xk

∂

∂x�

〉
be the corresponding Christoffel symbols of the connection ∇. We
can then introduce local coordinates (x1, x2, ζ) : µ̂−1(Ω) → R

2 × C

on µ̂−1(Ω) ⊂ Z by[(
∂

∂x1
+ ζ

∂

∂x2

)∣∣∣∣
(x1,x2)

]
←→ (x1, x2, ζ).

Then, in these coordinates, L1 is spanned by ∂/∂ζ, whereas L2 is
spanned by

Ξ0 =
∂

∂x1
+ ζ

∂

∂x2
+Q(x, ζ, ζ)

∂

∂ζ
+Q(x, ζ, ζ)

∂

∂ζ
,

where

Q(x, u, v) = −Γ2
11 − Γ2

12(u+ v)− Γ2
22uv + Γ1

11v + Γ1
12v(u+ v) + Γ1

22uv
2

encodes the Christoffel symbols Γj
k� of our chart, which are of course

functions of x = (x1, x2). In particular, D is spanned by ∂/∂ζ and

Ξ =
∂

∂x1
+ ζ

∂

∂x2
+ P (x, ζ)

∂

∂ξ
,(8)

where ζ = ξ + iη and where

P (x, ζ) = Q(x, ζ, ζ)(9)

= −Γ2
11 +

[
Γ1

11 − 2Γ2
12

]
ζ +

[
2Γ1

12 − Γ2
22

]
ζ2 + Γ1

22ζ
3

is evidently of the same differentiability class as ∇. But[
∂

∂ζ
, Ξ

]
=
[
∂

∂ζ
,
∂

∂x1
+ ζ

∂

∂x2
+ P (x, ζ)

∂

∂ξ

]
= 0 ,

because
∂

∂ζ
ζ = 0,

∂

∂ζ
P (x, ζ) = 0.

It therefore follows that D = span {Ξ, ∂/∂ζ} is involutive, as claimed.
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Notice that the replacement

Γi
jk � Γi

jk + δ
i
jβk + βjδ

i
k

leaves P (x, ζ) unaltered. Thus replacing ∇ with a projectively equiv-
alent connection ∇̂ leaves Ξ unchanged, and D = span{Ξ, ∂/∂ζ} is
therefore projectively invariant.

The distribution D does not quite define a complex structure on Z,
because certain real tangent vectors are elements of D. Indeed, notice
that, becauseD is the direct sum of L1 ⊂ VC and L2 ⊂ HC, and because
the projections TCM → VC and TCM → HC commute with complex
conjugation, any real element of D must have real components in L1

and L2. But since L1 contains no nonzero real element, we therefore
have

D ∩D = (L1 ∩ L1) + (L2 ∩ L2) = L2 ∩ L2.

On the other hand, Equation (6) tells us that L2 contains a nonzero
real element precisely at the hypersurface Z = PTM in Z = PTCM :

dim(Dz ∩Dz) =
{

0, z �∈ Z
1, z ∈ Z.(10)

Indeed, L2|Z is simply the complexification C ⊗ ker ν∗ of the tangent
space of the foliation F of PTM by lifted geodesics. This observation
gives a somewhat more geometric explanation for the previously noted
projective invariance of D. Indeed, in Equation (9) we carefully chose
our complex vector field Ξ so that at the locus Z, given by η = 0,
Ξ is real and tangent to F , with coefficients that are holomorphic in
ζ = ξ + iη, and so determined by the behavior of Ξ along η = 0.

Proposition 3.1. Let [∇] be a Zoll projective structure which is
represented by a C3 connection ∇ on M ≈ RP

2. Then there is a unique
integrable almost-complex structure J on N such that

Ψ∗[D] ⊂ T 0,1(N , J).
The unique C∞ structure on N associated with its maximal atlas of J-
compatible complex charts is compatible with the previously-constructed
C1 structure on N , so that Ψ : Z → N remains a C1 map relative
to this smooth structure; moreover, Ψ actually becomes C3 on the open
dense set Z − Z. Moreover, if [∇] is represented by a Ck,α connection
∇ on M , 3 ≤ k ≤ ∞, 0 < α < 1, and if N is again given the natural
C∞ structure associated with J , then Ψ : Z → N is actually a Ck+1,α

map on Z − Z.
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Remark. With the same hypotheses, we will later also show (re-
mark, page 488) that Ψ is actually Ck+1,α on all of Z.

Proof. We begin by defining J point-wise. On the open set N−N =
Ψ(Z − Z), we may do this by first observing that

TC(N −N) = Ψ∗D⊕Ψ∗D

by (10) and the fact that Ψ|Z−Z is a diffeomorphism; on N − N , we
now set

J =
[ −i 0

0 +i

]
with respect to this direct sum decomposition. On the other hand, since
V ⊂ N is, by definition, a copy of the total space of TN → N , we have
a canonical identification

TN|N = TN ⊕ TN,

where the first factor is tangent to N , and where the second factor is
transverse to it; and along N ⊂ N we can therefore set

J =
[
0 −1
1 0

]
with respect to this second direct sum decomposition. This defines the
almost-complex structure J at all points of N .

While it is not yet even yet clear that this J is continuous, it is
at least easy to see that Ψ∗D ⊂ T 0,1(N , J). Indeed, by construction,
Ψ∗D = T 0,1(N , J) away from N . On the other hand, Ψ∗D = Ψ∗V0,1

along Z, and since we used J‖ to pick out the normal factor of TZ|Z =
TZ ⊕ L before blowing down, Ψ∗ ◦ J‖ = J ◦ Ψ∗ on V|Z , and it follows
that Ψ∗D ⊂ T 0,1(N , J) along Z, too. Moreover, J is certainly the only
almost-complex structure with this property, since, for any y ∈ N ,

TyN = Ψ∗Vx ⊕Ψ∗Vx′

whenever x �= x′ are distinct points of the geodesic Cy ⊂M represented
by y.

Now since [∇] has been assumed to be C3, we can can give N a
‘provisional’ C2 structure, compatible with its fixed C1 structure, rela-
tive to which Ψ becomes a C2 map. We now claim that J is actually
Lipschitz continuous in the associated charts on N . Of course, this is is
only a nontrivial statement near a point y ∈ N , since the restriction of
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J to N − N corresponds, via Ψ, to a C3 almost-complex structure on
Z − Z.

Now let us recall that we have written down an explicit local framing
(Ξ, ∂/∂ζ) of D such that [Ξ, ∂/∂ζ] = 0, and such that Ξ is real along
Z = PTM and spans the tangent space of the foliation F there. Giving
an arbitrary leaf Ĉy a parameter t such that Ξ = d/dt along the leaf,
then, for any C2 function f on N we have

d

dt

[
Ψ∗

(
∂

∂ζ

)
f

]
=
d

dt

∂

∂ζ
Ψ∗f

= Ξ
∂

∂ζ
Ψ∗f

=
∂

∂ζ
ΞΨ∗f

=
∂

∂ζ
[Ψ∗(Ξ)f ] .

Thus, setting ζ = ξ + iη,

d

dt

[
Ψ∗

(
∂

∂ζ

)]
=
∂

∂ζ
[Ψ∗(Ξ)] =

i

2
∂

∂η
[Ψ∗(Ξ)]

at y ∈ N , since Ψ∗(Ξ) ≡ 0 along Z, where η = 0. Here the right-
hand side should be interpreted as the invariant derivative at a zero of
a section of a vector bundle on Σx := Ψ[µ̂−1(x)] ∼= CP1. On the other
hand,

Ψ∗
(
∂

∂ζ

)
∈ T 0,1

y (N , J)

for all t, by our previous discussion, so it follows that

∂

∂η
[Ψ∗(Ξ)]

∣∣∣∣
η=0

∈ T 0,1
y (N , J),

too. Along Σx, we therefore have, near an arbitrary point y ∈ N , two
continuous sections of T 0,1 given by e1 = Ψ∗(∂/∂ζ) and

e2 =
{

[Ψ∗(Ξ)] /η η �= 0
∂
∂η [Ψ∗(Ξ)] η = 0.

These sections are linearly independent at every point, and so span T 0,1
y ,

because det(Ψ∗) only vanishes to first order at Z. Moreover, since Ψ
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appears to be C2 in our coordinates, these sections are both continuously
differentiable in our chart, with derivatives that may be expressed in
any coordinate system in terms of partial derivatives of Ψ of order ≤ 2.
Hence J is also differentiable, and in particular is Lipschitz, along Σx,
with Lipschitz constant controlled by the partial derivatives of Ψ of
order ≤ 2. Since the family {Σx} sweeps out all the radial lines in our
tubular neighborhood TN of N ⊂ N , if follows that the tensor field J
on N is Lipschitz.

In particular, the partial derivatives of the components of J are
smooth bounded functions on the complement of a submanifold of N ,
and so, by extension across a set of measure zero, can be considered
as locally bounded measurable functions on N . By an elementary in-
tegration by parts argument, these bounded measurable functions are
then precisely the distributional partial derivatives of the relevant com-
ponents. The Nijenhuis tensor

τ(v,w) = [v,w]− [Jv, Jw] + J [v, Jw] + J [Jv,w]

of our almost-complex structure J is therefore well-defined in the distri-
butional sense, and has L∞

loc components. But this means that τ vanishes
in the distributional sense, since by construction J is integrable away
from a subset N ⊂ N of measure zero. However, Hill and Taylor [18]
have recently shown that the Newlander-Nirenberg theorem holds for
Lipschitz almost-complex structures for which τ = 0 in just this distri-
butional sense. Thus every point of N has a neighborhood on which we
can find a pair (z1, z2) of differentiable complex-valued functions with
dzk ∈ Λ1,0(N , J) and dz1 ∧ dz2 �= 0. Taking these to be the complex
coordinate systems gives N the structure of a compact complex surface.
In particular, this gives N a specific real-analytic structure, and hence
a specific C∞ structure.

Finally, we address the smoothness of Ψ : Z → N . Suppose that
∇ is of differentiability class Ck,α, and suppose that f is a holomorphic
function on some open subset of N ; we then consider the function Ψ∗f
on Z = PTCM . Now, by [18], f is a C1 function with respect to our
(original, unchanged) C1 structure on N , and Ψ∗f is therefore a C1

function, since Ψ was C1 by construction. Moreover, since Ψ∗D ⊂
T 0,1N , Ψ∗f = 0 solves the Cauchy-Riemann equations ∂D(Ψ∗f) = 0
with respect to the Ck,α almost-complex structure which D determines
on Z−Z. But since ∂D+∂∗D, defined with respect to an arbitrary Ck,α

Hermitian metric on Z − Z, is a first-order elliptic system with Ck,α

coefficients, elliptic regularity [24] tells us that Ψ∗f is Ck+1,α on Z −Z.
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Applying these observations when f is any local complex coordinate zj

on N then shows that Ψ belongs to the claimed differentiability class.
q.e.d.

Remark. The above proof uses a powerful recent analytic theorem
in order to obtain the result without too much hard work. Most readers
will find it reassuring, however, that older technology may instead be
used to prove a workable version of the proposition at the price of a half-
dozen derivatives and a certain amount of careful calculation. Moreover,
this approach has the added benefit of providing some immediate added
information concerning the regularity of Ψ along Z ⊂ Z. In particular,
those primarily interested in the C∞ case might well prefer the following
elementary argument.

Suppose that ∇ is a Ck connection, where k = 2� + 2. Choose
C2�+2 local real coordinates (y̌1, y̌2) on U ⊂ N , and pull them back to
Z = PTM so as to obtain C2�+2 functions y = ν∗y̌ on ν−1U ⊂ Z.
By construction, these solve the equation Ξy = 0. We now extend the
y as C�+2 complex-valued functions z defined on an open set in Z by
requiring that ∂y/∂ζ vanish to order � − 1 along Z. This completely
specifies the �-jet of the function, and we must have

z(x1, x2, ξ, η) =
�∑

r=0

ir

r!
ηr
∂ry

∂ξr

∣∣∣∣
(x1,x2,ξ)

+O(η�+1).

Indeed, this recipe does indeed give us

∂z

∂ζ
=

1
2

(
∂

∂ξ
+ i

∂

∂η

)( �∑
r=0

ir

r!
ηr
∂ry

∂ξr
+O(η�+1)

)

=
1
2

�∑
r=0

ir

r!
ηr
∂r+1y

∂ξr+1
− 1
2

�∑
r=1

ir−1

(r − 1)!
ηr−1∂

ry

∂ξr
+O(η�)

=
1
2

�∑
r=0

ir

r!
ηr
∂r+1y

∂ξr+1
− 1
2

�−1∑
r=0

ir

r!
ηr
∂r+1y

∂ξr+1
+O(η�)

=
1
2
i�

�!
η�
∂�+1y

∂ξ�+1
+O(η�)

= O(η�),

and since the cancellation is a term-by-term matter, uniqueness of the �-
jet follows. But since our condition on the �-jet is obviously independent
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of the choice of coordinates (x1, x2) on M , global existence now follows
by patching together any such local choices via a partition of unity.

The uniqueness argument also has another useful consequence. No-
tice that there certainly are C2 coordinates (̃z1, z̃2) for our provisional
C2 structure on N whose restrictions to N are the y̌, and which are sat-
isfy ∂J z̃ = 0 to 0th order along N , since the restriction of J to TN|N is
Ck−1. But pulling these back to Z would gives us C2 functions killed by
∂/∂ζ to 0th order along Z, and the � = 1 version of the above calculation
therefore gives

Ψ∗z̃ = z +O(η2).

It follows that (z1, z2) is actually a C1 complex-valued coordinate system
on N . Our strategy will now be to analyze the the almost-complex
structure J by thinking of (x1, x2, ξ, η) �→ (z1, z2) as a representation of
Ψ in special coordinates

To this end, we next observe that, since [Ξ, ∂
∂ζ
] = 0, the C�+1 func-

tion Ξz satisfies

∂m

∂ζ
mΞz = Ξ

∂m

∂ζ
m z = ΞO(η�−m+1) = O(η�−m+1),

so that (
∂

∂ξ
+ i

∂

∂η

)m

(Ξz)
∣∣∣∣
η=0

≡ 0,

for m = 0, . . . , �. But since Ξz ≡ 0 along η = 0, this tells us that

∂m

∂ηm
(Ξz)

∣∣∣∣
η=0

≡ 0

for m = 0, . . . , �, and hence that

Ξz = O(η�+1).

Now we have already shown, by an elementary argument, that the
almost-complex structure J is characterized, in a point-wise manner, by
the fact that Ψ∗∂/∂ζ and Ψ∗Ξ are always elements of T 0,1(N , J). Since
span{∂/∂z1, ∂/∂z2} contains the image of ∂/∂ζ and (trivially) Ξ along
the locus N given by 'mz = 0, we must therefore have

T 0,1(N , J)|�mz=0 = span
{
∂

∂z

}
=1,2

,
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and
T ∗1,0(N , J)|�mz=0 = span {dz}=1,2 .

Elsewhere,

T ∗1,0(N , J) = span

{
dz −

∑
ı

aıdz
ı

}
=1,2

and

T 0,1(N , J) = span

{
∂

∂z
+
∑

ı

aı
∂

∂zı

}
=1,2

,

where the aı are to be found by solving the equation[
a1

1 a1
2

a2
1 a2

2

] Ξz1 ∂z1

∂ζ

Ξz2 ∂z2

∂ζ

 =

 Ξz1 ∂z1

∂ζ

Ξz2 ∂z2

∂ζ

 .
But

∂

∂ζ
z =

∂y

∂ξ
+O(η),

and

Ξz = Ξ
(
−iη ∂y



∂ξ
+O(η2)

)
= −iη[Ξ, ∂

∂ξ
]y = iη

∂y

∂x2
+ iηP ′(ξ)

∂y

∂ξ
+O(η2),

so that ∣∣∣∣∣∣ Ξz1 ∂z1

∂ζ

Ξz2 ∂z2

∂ζ

∣∣∣∣∣∣ = iη
∣∣∣∣∣ ∂y1

∂x2 + P ′(ξ)∂y1

∂ξ
∂y1

∂ξ
∂y2

∂x2 + P ′(ξ)∂y2

∂ξ
∂y2

∂ξ

∣∣∣∣∣+O(η2)

= iη
∂(y1, y2)
∂(x2, ξ)

+O(η2).

But ∂(y1, y2)/∂(x2, ξ) �= 0 everywhere, since Ξ is always linearly inde-
pendent from ∂/∂x2 and ∂/∂ξ. Thus[

a1
1 a1

2

a2
1 a2

2

]

=

 Ξz1 ∂z1

∂ζ

Ξz2 ∂z2

∂ζ

 Ξz1 ∂z1

∂ζ

Ξz2 ∂z2

∂ζ

−1
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=
[
O(η�+1) O(η�)
O(η�+1) O(η�)

]
1
iη

(
∂(x2, ξ)
∂(y1, y2)

+O(η)
)[ ∂z2

∂ζ
−∂z1

∂ζ

−Ξz2 Ξz1

]

=
(
∂(ξ, x2)
∂(y1, y2)

+O(η)
)[

O(η�) O(η�−1)
O(η�) O(η�−1)

] [
O(η0) O(η0)
O(η) O(η)

]
= O(η�−1).

More precisely, for (x1, x2, ξ, η) in any fixed compact set, there is a
constant C such that

|aı| < C | η |�−1.

For the corresponding set in N , this becomes the statement that

|aı| < C1 | 'm
z |�−1.

But since Ψ is a proper map, it only takes a finite number of closed
coordinate balls to cover the inverse image of any compact set in N ,
and hence we have

|aı| < C2 | 'm
z |�−1

as long as 
z = (z1, z2) is constrained to lie in any fixed compact set.
Since (x1, x2, ξ, η) �→ (z1, z2) is a C�+1 diffeomorphism away from η =

0, the aı are C�+1 functions of the (z1, z2) away from 'm z1 = 'm z2 = 0,
and on the other hand we have seen that they vanish to order �−2 along
this bad locus. Thus the aı are C�−2 functions of the z, and the complex
structure J on N is C�−2 in these coordinates. If �−2 ≥ 1, the Nijenhuis
tensor therefore vanishes identically by continuity, since it is already
known to vanish on an open dense set. If � − 2 ≥ 4, or in other words
if [∇] is at least C14, we may therefore apply the original Newlander-
Nirenberg theorem [25] to get C�−2 functions (z1, z2) of (z1, z2) which
are holomorphic with respect to J . The Malgrange refinement [21] of
Newlander-Nirenberg may similarly be applied if �− 2 ≥ 2, or in other
words if [∇] is at least C10. The rest of the proof then proceeds as
before. Notice, however, that this second argument also directly verifies
that Ψ : Z → N is at least C [k/2]−3 along Z ⊂ Z.

Having constructed our compact complex surface N , we will now try
to unmask its identity. To this end, recall that we originally assembled
N from two open sets, U = Z − Z and V ≈ TRP

2. However, U may
be identified with the space of all almost-complex structures2 on M ,

2Indeed, the fact that D is a complex structure on U thus naturally arises in
the context of the O’Brian-Rawnsley generalization [26] of the Atiyah-Hitchin-Singer
approach [1] to twistor theory.



zoll manifolds and complex surfaces 483

since an almost-complex structure is completely characterized by its
(0, 1)-tangent space, and in dimension 2 this may be taken to be any
1-dimensional subspace of TCM which is not spanned by a real vector.
Thus U →M may be identified with the space of pairs ([g],�), where g
is a Riemannian metric on some tangent space TxM , [g] is its conformal
class, and � denotes a choice of orientation of TxM . Since the space
of Riemannian metrics is a convex cone, U therefore canonically deform
retracts to the set of point-wise orientations � on M , once we choose
a single ‘background’ Riemannian metric h on M . But the 2-fold cover
{�} → M is evidently just S2, since M = RP

2 by assumption. This
shows that U is homotopy equivalent to S2.

With this observation in hand, we are now in a position to list some
identifying traits of our complex surface (N , J).

Proposition 3.2. Let [∇] be a Zoll projective structure on M =
RP

2, and let N ≈ RP
2 denote the corresponding space of unoriented

geodesics. Then there is a compact complex surface N and an embedding
N ↪→ N such that:

• π1(N ) = 0;

• there is an anti-holomorphic involution σ : N → N with fixed-
point set N;

• for all x ∈ M , there is a σ-invariant complex curve Σx ⊂ N ,
Σx

∼= CP1, such that
�x = Σx ∩N ;

• the Σx all represent the same element of π2(N ); and

• if x and x′ are distinct points of M , then Σx and Σx′ are trans-
verse, and meet in exactly one point.

Proof. By construction, N = U∪V, where U = Z−Z and V = TN ≈
TRP

2. But we have just seen that U deform retracts to S2. Moreover,
V deform retracts to N ≈ RP

2, and the inclusion map  : U ∩ V ↪→ V
is homotopic to the bundle projection ℘ : (TN − 0N ) → N . Because
U is simply connected and U ∩ V is connected, the Seifert-van Kampen
theorem tells us that

π1(N ) =
π1(V)

�[π1(U ∩ V)] =
π1(N)

℘�[π1(TN − 0N )]
.
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But ℘� : π1(TN − 0N ) → π1(N) is surjective, since the fibers of ℘ are
path connected. Hence N is simply connected.

Complex conjugation PTCM → PTCM sends the distribution D to
its conjugate D. The induced involution σ : N → N is therefore anti-
holomorphic, and obviously has fixed point set precisely consisting of
N .

For each x ∈ M , set Σx = Ψ(PTxCM). Then Σx is an embedded
genus 0 complex curve inN . Since the fibers of PTCM are all homotopic,
so are their images in N . Moreover, since the fibers of PTCM are all
disjoint, we must have Σx∩Σx′ ⊂ N . But, by construction, Σx∩N = �x,
and so

Σx ∩ Σx′ = (Σx ∩N) ∩ (Σx′ ∩N) = �x ∩ �x′ ,

and if x �= x′ this consists of precisely one point y, representing the
unique geodesic joining x to x′; cf. Corollary 2.18. Now Σx and Σx′

are both σ-invariant, so TyΣx ∩ TyΣx′ is invariant under the complex
anti-linear involution σ∗ of TyN , which we may identify with complex
conjugation on C⊗TyN . But since Ty�x∩Ty�x′ = 0, its complexification
TyΣx∩TyΣx′ is also zero, and Σx and Σx′ therefore intersect transversely,
at the unique point y, exactly as claimed. q.e.d.

We now come to the key step in our proof, which is to observe
that N must be biholomorphic to CP2. It is a deep and remarkable
fact [33] that, up to biholomorphism, CP2 is the only simply connected
complex surface of Euler characteristic 3, and it might therefore be
tempting to now invoke this powerful result, much as we will later do in
§4 below. However, we will actually need to know a great deal about the
biholomorphism F : N → CP2, and for this reason it is in every sense
more satisfactory to instead make use of the following low-tech lemma,
based on the classical ideas of Castelnuovo, Enriques and Kodaira; cf. [3,
Proposition V.4.3]. As a courtesy to the reader, as well as to emphasize
the elementary nature of the result, we include a short, complete proof.

Lemma 3.3. Let S be a simply connected compact complex surface,
equipped with a fixed homology class a ∈ H2(S,Z) such that a · a = 1.
For every p ∈ S, suppose that there exists a nonsingular, embedded
complex curve Σ ⊂ S of genus 0 passing through p, with homology class
[Σ] = a. Then S is biholomorphic to CP2, in such a manner that all of
the given curves become projective lines.

Proof. Since the Frölicher spectral sequence of any complex surface
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degenerates at the E1 level [3, Theorem IV.2.7], we have

H1(S,C) ∼= H1(S,O)⊕H0(S,Ω1),

so the assumption that π1(S) = 0 immediately implies that H1(S,O) =
0. But the divisor line bundle O(Σ) of any of the curves Σ ⊂ S fits into
an exact sequence

0→ O f ·→ O(Σ)→ nΣ → 0(11)

of sheaves on S, where nΣ is the normal sheaf of Σ, extended to S by 0,
and where f · denotes multiplication by a holomorphic section f of O(Σ)
which vanishes only at Σ, with df �= 0 along Σ. Now the normal bundle
of Σ has degree a ·a = 1, and thus nΣ can be identified with the unique
degree-1 holomorphic line bundle O(1) on CP1. Since H1(S,O) = 0,
the long exact sequence in cohomology induced by (11) therefore gives
us the short exact sequence

0→ C
f ·→ Γ(S,O(Σ))→Γ(CP1,O(1))→ 0.(12)

In particular, H0(S,O(Σ)) ∼= C
3; moreover, there is a holomorphic

section of O(Σ) which is nonzero at any given point of S. The associated
map

F : S → P[H0(S,O(Σ))∗] ∼= CP2,

is thus everywhere defined. Also notice that F (Σ) is a projective line
P ⊂ CP2, and that the derivative of F is of maximal rank at any point p
of Σ, since (12) allows us to produce two sections of O(Σ), f and another
one, which vanish at p, but have linearly independent derivatives there.

Since H1(S,O) = 0, the exact sequence

· · · → H1(S,O)→ H1(S,O×) c1→ H2(S,Z)→ . . .

tells us that holomorphic line bundles on S are classified by their first
Chern classes. But if Σ and Σ′ are two complex curves in the ho-
mology class a, their divisor line bundles O(Σ) and O(Σ′) both have
Chern class equal to the Poincaré dual of a. Thus O(Σ) ∼= O(Σ′), and
Γ(S,O(Σ)) = Γ(S,O(Σ′)). The holomorphic map F : S → CP2 deter-
mined by Σ therefore also maps Σ′ biholomorphically to a projective
line P ′, and the derivative of F has maximal rank at every point of Σ′.
Since, by hypothesis, we may find such a curve through any point, F
is a local biholomorphism. But since S is compact, F is therefore a
covering map; and since CP2 is simply connected, we conclude that F
is a biholomorphism. q.e.d.
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Theorem 3.4. Let (M, [∇]) be a compact 2-manifold with Zoll
projective structure of odd conjugacy number. Assume that ∇ is of dif-
ferentiability class Ck,α, for some k ≥ 3, and some α ∈ (0, 1). Then
there is a Ck+2,α diffeomorphism Φ :M ≈−→ RP

2 such that [∇] = [Φ∗�],
where � is the Levi-Civita connection � of the standard, constant cur-
vature Riemannian metric h on RP

2.

Proof. By Proposition 3.2, the entire complex surface N is swept
out by the genus zero curves Σx, x ∈M , and the homology class [Σx] ∈
H2(N ,Z) is independent of x. Moreover, this homology class has self-
intersection

[Σx] · [Σx] = [Σx] · [Σx′ ] = 1,

since Σx and Σx′ intersect transversely in one point whenever x �= x′.
Lemma 3.3 therefore tells us that there is a biholomorphism F : N →
CP2 which sends each of the complex curves Σx to a corresponding
projective line CP1 ⊂ CP2.

Now the anti-holomorphic involution σ : N → N induces an anti-
holomorphic involution σ̃ = F ◦ σ ◦ F−1 : CP2 → CP2. By taking the
Jacobian determinant of this map, we then obtain an anti-holomorphic
involution σ̃∗ : K → K of the canonical line bundle K = Λ2,0 of CP2.
But K has a unique holomorphic cube-root K1/3, the frame bundle of
which is the universal cover of the frame bundle of K; and covering
space theory now tells us that σ̃∗ has three possible anti-holomorphic
lifts M : K1/3 → K1/3, differing by multiplicative factors of a cube-root
of unity. Choose any such lift, and observe that M2 is the identity on
any fiber over the fixed-point locus F (N) of σ̃; since F (N) is totally
real and of maximal dimension, the principle of analytic continuation
therefore implies that the holomorphic map M2 must therefore be the
identity. The anti-linear map

M∗ : Γ(CP2,O(K−1/3))→ Γ(CP2,O(K−1/3))

therefore satisfies (M∗)2 = 1. It is therefore diagonalizable over R, with
eigenvalues ±1, and, because it is anti-linear, it can be put in the form

(z1, z2, z3) �→ (z1, z2, z3)

by choosing a suitable basis for Γ(CP2,O(K−1/3)) ∼= Γ(CP2,O(1)) ∼=
C

3. But [z1 : z2 : z3] gives us a set of homogeneous coordinates on
CP2, so we have succeeded in identifying σ : N → N with the standard



zoll manifolds and complex surfaces 487

complex conjugation on CP2. In the process, we have thereby identi-
fied N with RP

2 ⊂ CP2, and each complex curves Σx with a complex
projective line CP1 which is invariant under complex conjugation.

Now let CP
∗
2 = P(C3∗) denote the dual projective plane of CP2 =

P(C3), and consider the map

Φ0 :M → CP
∗
2

x �→ F (Σx)⊥,

where ⊥ denotes the usual correspondence between lines in CP2 and
points in CP

∗
2. We claim that Φ0 is of differentiability class Ck+2,α.

Indeed, let C ⊂ U be a (noncompact) holomorphic curve which is trans-
verse to the fibers of µ̂, obtained by setting some local complex coor-
dinate z1 equal to zero. Since the almost complex structure on U is of
class Ck,α, elliptic regularity tells us that the local complex coordinates
(z1, z2) are of class Ck+1,α, and C is therefore representable as the image
of a Ck+1,α map from an open set in C to U . But the projection from
C to M is a local diffeomorphism, and so C may locally be thought of
as the graph of a Ck+1,α local section ς of U → M . But such a section
is precisely a local almost-complex structure on M of differentiability
class Ck+1,α. Since the map F ◦ Ψ ◦ ς is holomorphic with respect to
this Ck+1,α almost-complex structure, it is therefore of class Ck+2,α by
elliptic regularity. But on the domain of this function, F (Σx)⊥ is the
unique line joining F (Ψ(ς(x)) to its complex conjugate, and so can be
expressed in homogeneous coordinates as

Φ0(x) = F (Ψ(ς(x))× F (Ψ(ς(x)),
where × : C

3×C
3 → C

3∗ is the vector cross-product. SinceM is covered
by the domains of such local almost-complex structures ς, this shows
that Φ0 is Ck+2,α on all of M .

Now notice that Φ0 is also an immersion, because Ψ is a diffeo-
morphism on U , and the section of the normal bundle of Σx ⊂ N corre-
sponding to a nonzero element of TxM is therefore never identically zero.
Moreover, because each F (Σx) is invariant under complex conjugation,
Φ0(M) actually lies in the real dual projective plane RP

2∗ ⊂ CP
∗
2. Thus,

Φ0 actually gives us a Ck+2,α immersion

Φ :M → RP
2∗

which can be described as

x �→ F (�x)⊥.
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But sinceM is a compact 2-manifold, this immersion must be a covering
map, and since π1(M) ∼= π1(RP

2∗) = Z2, it follows that Φ is a diffeo-
morphism. Moreover,Φ sends the geodesic Cy to the set of projective
lines through the point F (y) ∈ RP

2, or in other words to the projective
line F (y)⊥ in RP

2∗. This shows that Φ∗∇ has the same geodesics as
the Levi-Civita connection � of the standard metric h on RP

2∗, so that
Φ∗� is projectively equivalent to ∇. Identifying RP

2 with RP
2∗ via any

isometry now proves the claim. q.e.d.

Remark. Much the same trick used to check the regularity of Φ0

also allows one to show that Ψ : Z → N is actually Ck+1,α along Z.
Indeed, let ς0, ς1 and ς∞ be three smooth sections of U → M over a
coordinate domain U ⊂ M whose values are all distinct at each point.
In terms of our local coordinates (x1, x2, ζ), these correspond to three
complex-valued functions ζ�(x) = ζ(ς�), � = 0, 1,∞, whose values are
all distinct, and never real. Set

ζ̃(x, ζ) =
[ζ − ζ0(x)][ζ∞(x)− ζ1(x)]
[ζ1(x)− ζ0(x)][ζ∞(x)− ζ] ,

so that ζ̃(x, ζ�(x)) = � for each x = (x1, x2) and � = 0, 1,∞. Choose an
inhomogeneous coordinate system on CP2 such that z1(F (Ψ(ς�(0, 0))),
� = 0, 1,∞, are all finite and distinct, and, for x in a neighborhood of
0, set

(z1
� (x), z

2
� (x)) = F ◦Ψ(ς�(x1, x2)), � = 0, 1,∞.

Then, in these coordinates, F ◦Ψ must explicitly be given by

(x, ζ) �→
(
λz1

0(x) + ζ̃(x, ζ)z
1∞(x)

λ(x) + ζ̃(x, ζ)
,
λz2

0(x) + ζ̃(x, ζ)z
2∞(x)

λ(x) + ζ̃(x, ζ)

)
,

where

λ(x1, x2) =
z1∞(x)− z1

1(x)
z1
1(x)− z1

0(x)
,

since each CP1 fiber of Z →M is sent to holomorphically to a projective
line in CP2 by F ◦ Ψ. If ∇ is Ck,α, this shows, albeit quite indirectly,
that Ψ is Ck+1,α on all of Z, and not just on U = Z − Z. Needless to
say, however, a direct analytic proof of this fact, perhaps along the lines
of [7], would be highly desirable.

If we start with a Zoll metric g on M = RP
2, rather than just a

Zoll projective structure, the complex surface N comes equipped with
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a certain additional complex curve Q ⊂ N . Indeed, let us consider the
locus

C = {[v] ∈ PTCM | g(v, v) = 0},
where g has been extended from TM to TCM as a complex bilinear
form, and set

Q = Ψ[C].
In any inhomogeneous coordinate ζ on the fiber PTxCM , g(v, v) be-
comes a quadratic polynomial of degree 2, and the corresponding locus
in PTxCM thus consists of two points, perhaps counted with multiplic-
ity. However, since g is real, C is invariant under complex conjugation,
so a root of multiplicity two would have to lie in the real slice PTxM ;
but the latter is impossible, since g is a positive-definite inner product
on TxM . Thus C intersects each fiber of PTCM in precisely two points,
neither of which is in PTM . Indeed, if we choose to think of U = Z −Z
as the bundle of all point-wise almost-complex structures on M , C is
consists precisely of those almost-complex structures which are orthog-
onal transformations of TxM with respect to g; and there are exactly
two of these for each x, corresponding to the two possible orientations
of TxM .

Now C is horizontal with respect to the Levi-Civita connection �,
since parallel transport preserves g. This not only implies that C meets
each fiber of PTCM transversely, but also, more importantly, that there
is a nonzero element Ξ0 of D which is tangent to C at each point.
Thus C is a complex curve in PTCM − PTM , and its diffeomorphic
image Q = Ψ[C] is a complex submanifold of N . Since C is invariant
under complex conjugation, the corresponding curve Q ⊂ N is therefore
invariant under the action of σ : N → N . Moreover, since C meets each
fiber of PTCM transversely, in two points �∈ PTM , it follows that Q
meets Σx transversely in two points, for any x ∈M .

Also notice that the bundle projection µ̂ : PTCM → M induces a
2-to-1 covering map � : C → M ≈ RP

2, so C is therefore compact —
and indeed, must be diffeomorphic to S2. Moreover, this covering map
� is a conformal map from the Riemann surface C to the Riemannian
manifold (M, g), since

�∗[T
0,1
[v] C] = span(v) ⊂ TCM,

and g(v, v) = 0. With this observation in hand, we may now prove the
following:
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Theorem 3.5. Let (M, g) be a Ck,α Riemannian 2-manifold whose
geodesics are all embedded circles of length π, where k ≥ 4 and 0 <
α < 1. If M is not simply connected, there is a Ck+1,α diffeomorphism
Φ :M ≈−→ RP

2 such that g = Φ∗h, where h is the standard curvature 1
Riemannian metric on RP

2.

Proof. With these hypotheses, the Hopf-Rinow theorem tells us
that M is necessarily compact, since, for any x ∈ M , the closed disk
of radius π/2 in TxM will surject onto M under the exponential map.
Proposition 2.21, therefore tells us that [�] is a Zoll projective structure
on the compact surfaceM . Now assume henceforth thatM is not simply
connected, We then know that M ≈ RP

2 by Proposition 2.9, and that
[�] has conjugacy number 1 by Theorem 2.17.

Since the Christoffel symbols of the Levi-Civita connection � of g
are expressed in terms of the first derivatives of g, Theorem 3.4 applies
provided we assume that g is of class Ck,α, 4 ≤ k, 0 < α < 1. Moreover,
the proof of Theorem 3.4 tells us that that there is a biholomorphism
F : N → CP2 such that the F (Σx) is a projective lines CP1 ⊂ CP2 for
each x ∈M , and such that F ◦σ ◦F−1 is the complex conjugation map

[z1 : z2 : z3] �→ [z1 : z2 : z3].

Thus, F (Q) is a nonsingular compact complex curve in CP2 which is in-
variant under complex conjugation, and which meets certain projective
lines transversely, in two points. Hence F (Q) is a nonsingular conic,
and so is the zero locus of a quadratic polynomial

0 = q(z) =
3∑

j,k=1

qjkz
jzk.

But since F (Q) is invariant under complex conjugation, it is also the
zero locus of q(z), so that both

3∑
j,k=1

(.e qjk)zjzk and
3∑

j,k=1

('m qjk)zjzk

vanish along F (Q); and at least one of these quadratic forms is non-
trivial, since q �≡ 0. Thus F (Q) is the zero locus of a real quadratic
form, represented by a real symmetric 3 × 3 matrix A = [ajk]. But
any such A is similar, over GL(3,R), to a diagonal matrix with entries
∈ {1, 0,−1}. On the other hand, since F (Q) ∩ RP

2 = ∅, the quadratic
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form represented by A must be definite. Thus, by a suitable real change
of coordinates, we may arrange for our map F : N → CP2 to send Q to
the standard conic Q0 given by

(z1)2 + (z2)2 + (z3)2 = 0

without sacrificing any of the previously-used properties of F .
On the other hand, we can repeat the entire construction for the

standard metric h on RP
2. The map Φ : M → RP

2 constructed in
Theorem 3.4 is then characterized by

Φ(x) = x̃⇐⇒ F (Σx) = F̃ (Σ̃x̃)

where untilded letters pertain to (M, g) and tilded ones pertain to
(RP

2, h). But since we have arranged for both C and C̃ to map bi-
holomorphically to Q0 ⊂ CP2, it follows that

F
[
Ψ[�−1(x)]

]
= F (Σx) ∩Q0

F̃
[
Ψ̃[�̃−1(x̃)]

]
= F̃ (Σ̃x̃) ∩Q0.

The holomorphic map

Φ̂ =
(
(F̃ ◦ Ψ̃)

∣∣∣
C̃

)−1 ◦ (F ◦Ψ) : C → C̃

therefore makes the diagram

C C̃

M RP
2

� �̃

Φ

Φ̂

❄❄

✲

✲

commute, and, since� and �̃ are both conformal maps, it follows that Φ
is also conformal. In other words, Φ∗g = e2uh for some smooth function
u :M → R. The Levi-Civita connection �̃ of Φ∗h is thus related to the
Levi-Civita connection � of g by

�̃vw − �vw = du(v)w + du(w)v + g(v,w) gradgu.

However, the proof of Theorem 3.4 tells us that �̃and � are also pro-
jectively equivalent; that is,

�̃vw − �vw = β(v)w + β(w)v
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for some 1-form β. Thus

β(v)w + β(w)v = du(v)w + du(w)v + g(v,w) gradgu

for all vectors v and w. But if, for example, we take v and w to be
orthonormal, with β(w) = 0, we then have β(v)w = du(v)w+du(w) v,
so that du(v) = β(v) and du(w) = 0 = β(w); thus du and β must have
the same components in the basis (v,w), and hence β = du. But if
instead we take w = v �= 0, we instead obtain

2 du(v) v + |v|2 gradgu = 2 β(v) v,

and the substitution β = du then tells us that gradgu = 0. Hence u is
constant. But, by hypothesis, g is normalized so that its geodesic circles
all have the same length as those of h. The constant e2u must therefore
equal 1, and Φ is therefore an isometry between (M, g) and (RP

2, h).
q.e.d.

This is essentially equivalent [4] to the classical Blaschke conjecture
first proved by Leon Green [13] in the early 1960s.

Corollary 3.6 (Blaschke Conjecture). Let (M, g) be a compact
Ck,α Riemannian 2-manifold for which the cut locus of each point x ∈M
is a one-point set {x′} ⊂M . If k ≥ 4 and 0 < α < 1, there is a Ck+1,α

diffeomorphism Φ : M ≈−→ S2 such that g = cΦ∗h, where h is the
standard curvature 1 Riemannian metric on S2, and c is some positive
constant.

Proof. On a compact Riemannian manifold, any minimizing geodesic
segment necessarily has finite length, so every arc-length-parameterized
geodesic emanating from x must arrive at the cut locus {x′}, and must
first do so precisely at time dist(x, x′). But since x′ represents the first
conjugate point on each geodesic leaving x, we see, by following these
geodesics backwards, that x is an element of the cut locus of x′, and our
hypothesis therefore implies that the cut locus of x′ is exactly {x}. Thus
x �→ x′ is an involution ı : M → M . Moreover, every geodesic of M is
a simple closed curve, and ı maps every such geodesic circle to itself,
by a rotation of 180◦. In particular, ı is an isometry, and is therefore
smooth. Moreover, dist(x, ı(x)) is independent of x along any particular
geodesic, and thus is constant on M . Thus the geodesics of the the
quotient Riemannian metric on M/〈ı〉 are all simple closed curves of
equal length. After a suitable rescaling, Theorem 3.5 therefore tells us
that the nonsimply-connected Zoll manifoldM/〈ı〉 becomes isometric to
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the standard RP
2, and hence thatM becomes isometric to the standard

S2. q.e.d.

Remark. It is interesting to examine the minimal level of differen-
tiability needed for our proof of Theorem 3.5. If we just assume that
g is of class C4, then the proof goes through, although the constructed
map Φ is a priori also only C4. Nonetheless, Φ∗h is still C3, and its
Gauss curvature is therefore the pull-back of the Gauss curvature of h.
This shows any C4 Zoll metric g on RP

2 must have constant curvature.
However, Green’s proof [13] actually draws the same conclusion even if
h is merely assumed to be C3. It would thus be extremely gratifying if
there were some way of improving the present arguments so as to make
them work, e.g., when [∇] is merely assumed to be of class C2!

4. Zoll structures on the 2-sphere

In light of our success in understanding Zoll structures of odd con-
jugacy number, it now seems reasonable to ask what our techniques can
tell us about the even case. Let us therefore suppose that we are given a
C3 Zoll projective structure [∇] of even conjugacy number on a compact
2-manifold M . By Corollary 2.20, M is then diffeomorphic to S2. Let
us fix some orientation of M , and observe that

U = Z − Z = PTCM − PTM

can once again be identified with the space of all point-wise almost-
complex structures on M . Thus

U = U+ ∪ U−,

where U+ (respectively, U−) consists of those almost-complex structures
which are compatible (respectively, incompatible) with the given orien-
tation of M . These are both connected sets; indeed, either can be
identified with the space of all point-wise conformal structures on M .
Let us now consider the compact 4-manifold-with-boundary

Z+ := U+ ∪ Z,

with ∂Z+ = Z. We can identify Z+ with the nonzero, semi-positive
elements of 02T ∗M , modulo rescaling. Relative to some chosen ‘back-
ground’ metric h on M ≈ S2, we can then identify Z+ →M as the unit
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disk bundle in the traceless, symmetric bilinear forms 02
0T

∗M . From
a topological view-point, this allows us to think of Z+ as the unique
oriented 2-disk bundle of Euler class 4 over S2.

Let us now give the normal bundle J‖ kerµ∗ of Z = ∂Z+ the ‘in-
ward pointing’ orientation, and then give kerµ∗ the corresponding ori-
entation. Having made such a choice, Theorem 2.15 then tells us that
ν : Z → N can be canonically identified with the circle bundle STN →
N , in such a way that J‖ kerµ∗ is canonically identified with the pull-
back of the (trivial) tautological line bundle over STN , meaning the
subbundle L ⊂ π̂∗TN , where π̂ : STN → N is the canonical projec-
tion, whose fiber at [v] ∈ PTN is span(v). Now, with respect to the
canonical ‘outward pointing’ orientation of L → STN , let L+ be the
[0,∞)-bundle consisting of vectors which are not inward pointing. By
the tubular neighborhood theorem, Z = ∂Z+ has a neighborhood V̂
in Z+ which can be identified with L+ via a C1 diffeomorphism whose
derivative along the zero section of L is given by our previous identifi-
cation of J‖ kerµ∗ and L. But we have an obvious C1 ‘blowing down’
map ψ : L+ → TN , and, letting V denote the total space of TN , this
now corresponds to a C1 map ψ̃ : V̂ → V which is a diffeomorphism on
the complement of Z. We may now define a differentiable 4-manifold

N = U+ ∪ψ̃
V

by gluing together U+ and V = TN via ψ̃. By construction, we have a
surjective C1 ‘blowing down’ map

Ψ : Z+ → N ,
given by the identity on U+ and by ψ̃ on V̂. In particular we know
that N is compact. Moreover, if [∇] is Ck, we can once again impose a
‘provisional’ Ck−1 structure on N so that Ψ will become a Ck−1 map.

Now Z still carries an involutive complex distribution D, and the
proof of Proposition 3.1, supplemented by the remark on pp. 479-482,
then proves the following:

Proposition 4.1. Let [∇] be a Zoll projective structure which is
represented by a C3 connection ∇ on M ≈ S2. Then there is a unique
integrable almost-complex structure J on N such that

Ψ∗[D] ⊂ T 0,1(N , J).
The unique C∞ structure on N associated with its maximal atlas of J-
compatible complex charts is compatible with the previously-constructed
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C1 structure on N , so that Ψ : Z → N remains a C1 map relative to
this smooth structure. Moreover, if ∇ is of class C2k+6, then Ψ is Ck.

In order to unmask the identity of the complex surface (N , J), we
will now call in the heavy artillery, in the form of the following funda-
mental result, due to Yau [33]. We include the synopsis of a complete
proof, both as a courtesy to the reader, and for our own enjoyment.

Lemma 4.2 (Yau). Let S be a simply connected compact complex
surface with b2(S) = 1. Then S is biholomorphic to CP2.

Proof. Any compact, oriented, simply connected 4-manifold S has
Euler characteristic χ(S) = 2+b2(S), so that χ(S) = 3 if b2(S) = 1. On
the other hand, if b2(S) = 1, the signature τ(S) is evidently ±1, where
the ± sign indicates whether the intersection form of S is positive or
negative definite. But our S is assumed to admit a complex structure,
so its first Chern class has self-intersection

c21(S) = 2χ(S) + 3τ(S) = 6± 3 > 0,

and the intersection form H2(S,Z) × H2(S,Z) → Z therefore cannot
be negative definite. Thus τ(S) = 1, and c21(S) = 6 + 3 = 9. Since this
same calculation also shows that there is a holomorphic line bundle of
positive self-intersection, Grauert’s criterion implies [3] that S is pro-
jective algebraic. But since H2(S,Z) ⊂ H2(S,R) ∼= R, and c1(S) �= 0,
this can only happen if c1(S) = ±[ω] for some Kähler form ω.

Now if we had c1(S) = −[ω], the Aubin/Yau theorem [2, 33] would
tell us that S admitted a Kähler-Einstein metric of negative Ricci cur-
vature. However, one has the Gauss-Bonnet-like formula

χ− 3τ =
1
8π2

∫
S

[
3|W−|2 − | ◦r |2

2

]
dµ

for any Kähler metric on any compact complex surface, where
◦
r is the

trace-free Ricci-curvature, and where the anti-self-dual Weyl curvature
W− is the only piece of the curvature tensor not determined by the Ricci
tensor. For our manifold, χ = 3τ , whereas

◦
r vanishes for any Einstein

metric, so we would conclude that W− ≡ 0. Our Kähler-Einstein man-
ifold would therefore necessarily have negative sectional curvature, and
so would have contractible universal cover. But S has been assumed to
be compact and simply connected, so this is a contradiction.

We must therefore have c1(S) = [ω] for some Kähler metric. Set
L = K−1/3, where K = Λ2,0 is once again the canonical bundle, so
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that L is the unique positive line bundle on S with c21(L) = 1. By
the Kodaira vanishing theorem, Hp(S,O(L)) = 0 for p > 0, and the
Hirzebruch-Riemann-Roch theorem therefore tells us that

h0(S,O(L)) =
〈(

1 +
c1
2
+
c21 + c2
12

)
exp

(c1
3

)
, [S]

〉
=

11
36
c21+

1
12
c2 = 3.

Moreover, if Σ ⊂ S is the curve cut out by the vanishing of any nontrivial
holomorphic section of L, then, because L is positive on every curve and
satisfies L · L = 1, Σ can have only one irreducible component, and the
zero of the section can only have multiplicity 1 at a generic point of Σ.
If Σ̂ is the normalization of Σ, the pull-backs of these sections therefore
give us a 2-dimensional space of sections of the degree-1 line bundle
L|Σ̂. But since Σ̂ is connected, Abel’s theorem tells us that this gives
us a biholomorphism Σ̂ → CP1; and since this map is induced by pull-
backs of sections from S, Σ̂ → S is an embedding, so that Σ = Σ̂ is a
nonsingular embedded curve. Moreover, there is no point of Σ at which
every section of L vanishes. This shows that the linear system |L| has
empty base locus, and the sections of L therefore give us a well-defined
holomorphic map

F : S → P[H0(S,O(L))∗] ∼= CP2.

But since the inverse image of any CP1 ⊂ CP2 is a smooth complex
curve Σ which is carried biholomorphically onto its image, this map is
a degree-1 holomorphic submersion, and is therefore a biholomorphism.

q.e.d.

Let us next recall that a differentiable n-dimensional submanifold
X of a complex n-manifold (Y 2n, J) is said to be totally real if TpX ∩
J(TpX) = 0 at each p ∈ X. When n = 2, which is the case of interest
to us here, this is equivalent to the statement that TpX is never a 1-
dimensional complex subspace of (TpY, J) ∼= C

2. This is of course an
open condition on TpX; indeed, for n = 2, this claim essentially follows
from the observation that Gr1(C2) = CP1 is a closed submanifold of
Gr2(R4) ∼= (S2 × S2)/Z2. Consequently, every submanifold X ′ ⊂ Y
which C1-close to a given totally real submanifold X ⊂ Y will also be
totally real.

It will also be convenient to introduce some terminology specifically
tailored to the discussion of differentiable embeddings of RP

2 into CP2.

Definition 4.3. A differentiable embedding  : RP
2 ↪→ CP2 will be

said to be weakly unknotted if there exists a diffeomorphism f : CP2 →
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CP2 such that  = f◦j, where j : RP
2 ↪→ CP2 is the standard embedding

[x : y : z] �→ [x : y : z].

Remark. By composing with complex conjugation CP2 → CP2

if necessary, we may always arrange for f to induce the identity on
homology. But since two self-homeomorphisms of a simply connected
compact 4-manifold are C0-isotopic iff they induce the same maps on
homology [11], our diffeomorphism f would then be in the identity
component of the homeomorphism group of CP2. Thus any weakly
unknotted embedding of RP

2 in CP2, as defined above, may be moved
through locally flat topological embeddings so as to “unknot” it into the
standard RP

2. A priori, however, it might still be impossible to carry
out this unknotting process by a path of smooth embeddings.

Theorem 4.4. Let [∇] be a C3 Zoll projective structure on an ori-
ented surface M ≈ S2. Then, up to a projective linear transformation,
the projective structure [∇] uniquely determines a differentiable, totally
real, weakly unknotted embedding of the space of geodesics N ≈ RP

2 into
CP2. If [∇] is C∞, so is the embedding. Moreover, the image of each
of the circles �x ⊂ N , x ∈ M , bounds a holomorphic embedding of the
disk D2 ↪→ CP2, and the interiors of these disks foliate the complement
CP2 −N .

Proof. By construction, the smooth 4-manifold N can be obtained
by gluing the unit disk bundle in TRP

2 to the Euler-class-4 D2 bundle
over S2 via an orientation-reversing diffeomorphism of their common
boundary, which is the Lens space X = S3/Z4. However, the diffeo-
morphism type of the pair (N , N) only depends on the isotopy class of
the diffeomorphism X → X. But the group of orientation-preserving
diffeomorphisms of X is connected [6], so it follows that the diffeotype
of the pair (N , N) is independent of which Zoll projective structure
[�] on S2 we use. However, the standard structure [∇] gives us the
pair (CP2,RP

2). Thus there is a diffeomorphism f : CP2 → N with
f(RP

2) = N .
In particular, this argument says that N is diffeomorphic to CP2.

Lemma 4.2 therefore tells us that there is a biholomorphism F : N
→ CP2, and this F is unique modulo composition with elements of
PSL(3,C). The promised embedding N ↪→ CP2 is then given by F |N ,
whereas the promised disks are the images of the the fibers of Z+ →M
under F ◦Ψ. Moreover, since the diffeomorphism f = F ◦f : CP2 → CP2

sends RP2 to F (N), our embedding F |N is weakly unknotted, and we
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are done. q.e.d.

Now, in order to invert the above construction, let us instead suppose
that we are given a totally real submanifold N ≈ RP

2 of CP2, and
attempt to construct a suitable family of holomorphic disks D ↪→ CP2

with boundary ∂D = S1 ↪→ N ; these circles in N will then eventually
become the curves �x corresponding to a Zoll projective structure on S2.
Our method of accomplishing this will be to invoke the inverse function
theorem, and so will apply only when the given embedding N ↪→ CP2

is C1 close to the standard embedding RP
2 ↪→ CP2. Thus, relative to

a choice of tubular neighborhood, we will henceforth assume that N is
represented by by a section of the normal bundle of RP

2. This allows us
a further technical simplification, since N will automatically be totally
real provided the corresponding section has sufficiently small C1-norm.
We remark that the normal bundle of RP

2 ⊂ CP2 can be canonically
identified, via the complex structure, with TRP

2. Thus the freedom in
choosing N ⊂ CP2 can be conveniently parameterized by the space of
vector fields on RP

2 of sufficiently small C1-norm.
For the standard projective structure on S2, the disks in question

are obtained by considering those complex projective lines CP1 ⊂ CP2

which are complexifications of some real projective line RP
1 ⊂ RP

2,
and then choosing one of the hemispheres into which such a CP1 is
divided by the corresponding RP

1. In order to understand these disks
more explicitly, let us begin with the standard homogeneous coordinates
[z1 : z2 : z3] on CP2, with the usual convention that RP

2 is represented
by z1, z2, z3 real, and consider the affine chart (z1, z2) on CP2 defined by

z1 =
z1 − iz2
z1 + iz2

, z2 =
z3

z1 + iz2
.

This chart realizes RP
2 − [0 : 0 : 1] as the Möbius band B ⊂ C

2 given
by

z1z1 = 1, z1z2 = z2.

Note that we may also parameterize B by

z1 = eiθ

z2 = teiθ/2,

where the real coordinates (θ, t) are best thought of as really taking
values in the abstract Möbius band R

2/Z corresponding to the Z-action
generated by

(θ, t) �→ (θ + 2π,−t).
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Now the projective line z3 = 0 in CP2 corresponds, in this picture,
to the complex affine line z2 = 0; and one hemisphere of this CP1 is the
disk |z1| ≤ 0 in this affine complex line, the boundary of which is the
circle θ �→ (eiθ, 0) in B. How many other ways can one holomorphically
embed the disk D into C

2 so that its boundary ∂D = S1 lands in B,
and is homotopic in B to eiθ �→ (eiθ, 0)? Projecting any such disk to
the z1 axis would give us a holomorphic map D → C whose boundary
values define a degree-1 map S1 → S1. Any such map is a Möbius
transformation

ζ �→ aζ + b
a+ bζ

, |a|2 − |b|2 = 1.(13)

Thus, after composition with a Möbius transformation, any such disk
is the graph z2 = f(z1) of a holomorphic function f on the unit disk
|z1| ≤ 1. However, the requirement that f(∂D) lie in B says that

f(eiθ) = eiθf(eiθ).

If f has power series expansion

f(z1) =
∞∑
�=0

a�z
�
1,

our boundary condition becomes

∞∑
�=0

a�e
i�θ =

1∑
�=−∞

a−�+1e
i�θ.

Hence, setting a = a0, every such disk is the graph

z2 = a+ az1

of an affine linear function restricted to the unit disk |z1| ≤ 1. Each
of these disks exactly represents one hemisphere of the projective line
CP1 ⊂ CP2 given by

z3 = (2 .e a) z1 + (−2 'm a) z2,

and the boundaries of these disks are thus precisely the real projective
lines RP

1 ⊂ RP
2 which do not pass through the point [0 : 0 : 1] which

was excluded by our choice of coordinates. By considering all possible
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permutations of the homogeneous coordinates z1, z2, z3, one obtains the
entire family of disks corresponding to the points of S2 equipped with
its standard projective structure.

We now consider the problem of constructing an analogous family
of disks with boundaries on a submanifold N ⊂ CP2 which is C1-near
to RP

2 ⊂ CP2. To do this, it is enough to completely analyze the
corresponding problem arising when intersection of the Möbius band B
and a large ball is replaced with a section of its normal bundle, since N
is covered by a finite number of pieces of this form.

To this end, we will begin by considering maps of the circle S1 to
the abstract Möbius band R

2/Z with winding number 1. For reasons of
technical transparency, we will consider maps of Sobolev class L2

k, where
k ≥ 1. Let us recall that the Cauchy-Schwarz inequality immediately
implies the Sobolev embedding theorem in this case, since any smooth,
real valued function f on the line satisfies

|f(a)− f(b)| ≤
(∫ b

a

∣∣∣∣ dfdx
∣∣∣∣2 dx

)1/2

|a− b|1/2,(14)

whence L2
k(S

1) ⊂ Ck−1, 1
2 (S1). In particular, maps from the circle of

class L2
k are continuous, and it thus makes sense to talk about winding

numbers of such maps. Moreover, this shows that point-wise multiplica-
tion of functions gives us a continuous bilinear map L2

k(S
1)×L2

k(S
1)→

L2
k(S

1). Also note that the composition of of any Ck function with an
L2

k function is again an L2
k function.

We will freely identify L2
k(S

1) with the real Hilbert space of real-
valued L2

k functions of θ ∈ [0, 2π] with u(2π) = u(0), and we will also
need to consider the real Hilbert space L̃2

k(S
1) of L2

k sections of the
Möbius band, which we may think of as functions of θ ∈ [0, 2π] with
u(2π) = −u(0). Since any continuous section of the Möbius band must
have a zero, (14) tells us that any u ∈ L̃2

k, k ≥ 1, satisfies

sup |u| ≤ √π
(∫ 2π

0

∣∣∣∣dudθ
∣∣∣∣2 dθ

)1/2

≤ √π‖u‖L2
k
,

so the elements u of the ball of radius R/
√
π in L̃2

k maybe thought of
as defining a section θ �→ (θ, u(θ)) of the finite Möbius strip

BR = (R× [−R,R]) /Z,
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where the Z action is again generated by (θ, t) �→ (θ + 2π,−t). We will
use Ck(BR) to denote the real Banach space of Ck real-valued functions
on this strip, and

C̃k(BR) =
{
h : R× [−R,R] Ck→ R | h(θ + 2π,−t) = −h(θ, t)

}
to denote the real Banach space of Ck sections of the nontrivial real line
bundle on BR, the Banach-space norms being of course the suprema of
the absolute values of all partial derivatives of order ≤ k.

Any pair (h1, h2) ∈ Ck+1(BR) × C̃k+1(BR) defines an embedding
BR ↪→ C

2 by

(θ, t) �→
(
eh1(θ,t)+iθ, [t+ ih2(θ, t)]eiθ/2

)
,

and any Ck+1 submanifold N ⊂ CP2 which is sufficiently close to the
standard RP

2 ⊂ CP2 can be written as a finite union of images of
such embeddings of finite strips via suitable systems of inhomogeneous
coordinates. The general L2

k embedding of S1 inside this strip with
winding number 1 can then be written as

θ �→
(
eh1(θ+u1(θ),u2(θ))+i[θ+u1(θ)],

[u2(θ) + ih2(θ + u1(θ), u2(θ))]ei(θ+u1(θ))/2

)
for u1 ∈ L2

k(S
1) and u2 ∈ L̃2

k(S
1)R, where L̃2

k(S
1)R denotes the open

ball of radius R/
√
π centered at the origin in L̃2

k(S
1). This motivates

us to consider the maps of Banach manifolds

F1,F2 : L2
k(S

1)× L̃2
k(S

1)R × Ck+�(BR)× C̃k+�(BR)

−→ L2
k(S

1,C)× L2
k(S

1,C),

given by

[F1(u1, u2, h1, h2)](θ) = exp
[
h1

(
θ + u1(θ), u2(θ)

)
+ i

(
θ + u1(θ)

)]
and

[F2(u1, u2, h1, h2)](θ)

=
[
u2(θ) + ih2

(
θ + u1(θ), u2(θ)

)]
exp

(
i
θ + u1(θ)

2

)
.
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These maps are both C�; in particular, for � ≥ 1 they have bounded
continuous derivatives given by

(u̇1, u̇2, ḣ1, ḣ2)]
F1∗�−→[
ḣ1(θ + u1, u2) +

(
i+

∂h1

∂θ

)
u̇1 +

∂h1

∂t
u̇2

]
eh1+i(θ+u1)

and

(u̇1, u̇2, ḣ1, ḣ2)]
F2∗�−→

[(
iu2 − h2

2
+ i
∂h2

∂θ

)
u̇1 +(

1 + i
∂h2

∂t

)
u̇2 + iḣ2(θ + u1, u2)

]
ei(θ+u1)/2,

where h1, h2, and their first partial derivatives with respect to θ and
t are understood to be evaluated at (θ + u1(θ), u2(θ)), and thus are
functions of class L2

k which depend continuously on (u1, u2, h1, h2). In
particular, notice that the derivatives of these maps at the origin are
respectively given by

[F1∗0(u̇1, u̇2, ḣ1, ḣ2)](θ) =
[
ḣ1(θ, 0) + iu̇1(θ)

]
eiθ

and
[F2∗0(u̇1, u̇2, ḣ1, ḣ2)](θ) =

[
u̇2(θ) + iḣ2(θ, 0)

]
eiθ/2.

Next, we introduce the orthogonal projection

Π : L2(S1,C)→ L2↓

to the closed linear subspace

L2↓ =
{∑

�<0

a�e
i�θ

∣∣∣ a� ∈ C,
∑
�<0

|a�|2 <∞
}
⊂ L2(S1,C)

of negative frequency functions given by

Π

( ∞∑
�=−∞

a�e
i�θ

)
=

−1∑
�=−∞

a�e
i�θ.

This a bounded linear operator, and indeed has operator norm 1 . Notice
that the kernel of Π precisely consists of those L2 function on the circle
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which arise as the boundary values of holomorphic functions on the disk.
Set

L2
k↓ =

{∑
�<0

a�e
i�θ

∣∣∣ a� ∈ C,
∑
�<0

�2k|a�|2 <∞
}
= L2

k(S
1,C) ∩ L2↓.

and notice that
Π : L2

k(S
1,C)→ L2

k↓
is also bounded, and indeed again has operator norm 1.

Similarly, let us define

p : L2
k(S

1,C)→ C

by

p

( ∞∑
�=−∞

a�e
i�θ

)
= a0.

Remark. The linear map Π is closely related to the Hilbert trans-
form on the circle, and can be explicitly be realized [29] as the singular
integral operator

[Π(u)](θ) = u(θ)− e
−iθ

2π
p.v.

∫ 2π

0

u(φ)dφ
ei(φ−θ) − 1

.

This can be used [17] to show that Π is also bounded with respect to in
Ck,α norms. However, we have chosen, in the spirit of [5], to emphasize
Sobolev norms here, as this has the advantage of keeping the technical
details to a minimum.

Now, for k, � ≥ 1, consider the C� map

L2
k(S

1)× L̃2
k(S

1)R × Ck+�(BR)× C̃k+�(BR)
F−→ L2

k↓ × L2
k↓ × Ck+�(BR)× C̃k+�(BR)× C× C× R

of real Banach manifolds defined by

F = (Π ◦ F1)× (Π ◦ F2)×L× L̃× (p ◦ F1)× (p ◦ F2)×x,

where

L : L2
k(S

1)× L̃2
k(S

1)R × Ck+�(BR)× C̃k+�(BR) −→ Ck+�(BR)
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and

L̃ : L2
k(S

1)× L̃2
k(S

1)R × Ck+�(BR)× C̃k+�(BR) −→ C̃k+�(BR)

are the factor projections, while

x : L2
k(S

1)× L̃2
k(S

1)R × Ck+�(BR)× C̃k+�(BR) −→ R

is given by

x(u1, u2, h1, h2) =
1
2π

∫ 2π

0
u1(θ) dθ.

Since Π, L, L̃, p and x are all bounded linear operators, this map is
C�, with derivative given by

F∗ = (Π ◦ F1∗)× (Π ◦ F2∗)×L× L̃× (p ◦ F1∗)× (p ◦ F2∗)×x.

In particular, for any

u̇1 = b0 +
∞∑
�=1

b� cos(�θ) + c� sin(�θ)

in L2
k(S

1), and any

u̇2 =
∞∑
�=0

b̃� cos
[
(�+ 1

2)θ
]
+ c̃� sin

[
(�+ 1

2)θ
]

in L̃2
k(S

1), we see that the derivative of F at the origin is given explicitly
by

F∗0


u̇1

u̇2

ḣ1

ḣ2

 =



Π
(
ḣ1(θ, 0)eiθ

)
+
∑∞

�=2
−c�+ib�

2 e−i(�−1)θ

Π
(
iḣ2(θ, 0)eiθ/2

)
+
∑∞

�=1
b̃�+ic̃�

2 e−i�θ

ḣ1

ḣ2

p
(
ḣ1(θ, 0)eiθ

)
+ −c1+ib1

2

p
(
iḣ2(θ, 0)eiθ/2

)
+ b̃0+ic̃0

2

b0


.

Since F∗0 manifestly has bounded inverse, the Banach-space inverse
function theorem [28] tells us that there is an open neighborhood U of
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0 ∈ L2
k(S

1)× L̃2
k(S

1)R ×Ck+�(BR)× C̃k+�(BR) and an open neighbor-
hood V of 0 ∈ L2

k↓ × L2
k↓ × Ck+�(BR) × C̃k+�(BR) × C × C × R such

that
F|U : U−→V

is a C� diffeomorphism. For any h1, h2 of sufficiently small Ck+� norm,
we therefore obtain a 5-parameter family of holomorphic disks D →
CP2 with boundaries on the graph of (h1, h2) by considering the unique
disks with boundary values specified by (F|U)−1[V ∩ ({(0, 0, h1, h2)} ×
C × C × R)]. On the other hand, not all of these disks correspond to
geometrically distinct unparameterized disks, since any parameterized
disk gives rise to a 3-parameter family of other parameterized disks by
composition with Möbius transformations of the form (13). However,
we can easily kill this “gauge freedom” by instead considering the 2-
parameter family of disks whose boundary values are the circles

(F|U)−1(0, 0, h1, h2,−w2, w, 0), w ∈ C, |w| < ε.
The other disks in our original 5-parameter family can then all be ob-
tained by composing the disks in this 2-parameter family with Möbius
transformations. Notice, however, that we have now carefully con-
structed our disks so that their centers are on the complex curve

z1 + z2
2 = 0

in C
2, and that our parameter w exactly sweeps out a neighborhood of

the origin in this curve. However, this curve is just an affine chart on
the conic Q ⊂ CP2 given by

z2
1 + z

2
2 + z

2
3 = 0.

Now the subgroup SO(3) ⊂ PSL(3,C) preserves bothQ and RP
2 ⊂ CP2,

and acts transitively on both Q and the set of real projective lines
RP

1 ⊂ RP
2. Thus, by considering only affine charts (z1, z2) related to

our original choice by the action of SO(3), we can construct a collection
of families of disks so that their centers run through a finite open cover of
Q ≈ S2, in a uniform manner depending on the submanifold N ⊂ CP2,
thought of as the graph of a section of the normal bundle of RP

2 ⊂
CP2 of sufficiently small Ck+� norm, corresponding to (h1, h2) in local
coordinates. Since F|U is a diffeomorphism, we can also arrange that
these disks coincide up to Möbius transformations on overlaps by at
worst restricting to a smaller open set of N ’s in the Ck+� topology.
This yields the following result:
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Proposition 4.5. If N ⊂ CP2 is the image of any embedding
RP

2 ↪→ CP2 which is sufficiently close to the standard one in the C2k−1

topology, then N contains a unique family of embedded oriented circles
�x ⊂ N , x ∈ S2, each of which bounds an embedded holomorphic disk
D2 ⊂ CP2, and each of which is L2

k close (and hence Ck−1 close) to
the image of an oriented real projective line RP

1 ↪→ RP
2. Moreover,

if k ≥ 2, the corresponding family of holomorphic disks can be realized
by a fiber-wise holomorphic, Ck−1 map from the unit disk bundle in the
O(4) complex line bundle over S2 = CP1. These disks are all embedded,
and their interiors foliate CP2 −N .

Proof. Locally, our family of disks has been found by using F−1 to
construct a Ck−1 map from an open setW ⊂ C to the space of L2

k maps
from the circle to N which bound maps of the 2-disk. But, provided
that k ≥ 2, the inclusion L2

k ↪→ Ck−1 is a bounded linear map, and the
maximum principle tells us that we therefore have a Ck−1 map from W
into the Ck−1 maps of the disk to CP2. But any such map is given by a
Ck−1 map W ×D2 → CP2. Since we have also arranged for the centers
of our disks to land on the conic Q, our various local families of disks
are related by Möbius transformations which fix the origin, and so are
elements of U(1); moreover, these transformations are Ck−1 functions
of our parameters, and so determine a Ck−1 disk bundle over Q ≈ S2.

Now our family of disks is a Ck−1 map f from this disk bundle to
CP2, and sends the zero section to Q. In our (z1, z2) coordinates, each
our disks is Ck−1 close to a disk in a complex line z2 = a + az1. By
possibly shrinking our neighborhood of N ’s, we can thus arrange that
each is embedded, and transverse to Q. Similarly, we can arrange for
the derivative of f to be nonzero everywhere, since locally the map is C1

close to our model example. Moreover, each of our N ’s can be obtained
from RP

2 by applying a self-diffeomorphism of CP2 which is Ck−1 close
to the identity, and the push-forward of the local functions |z1|2 by these
diffeomorphisms will result in functions which are subharmonic on each
disk of the family, and the maximum principle therefore shows each of
the disks will meet N only along its boundary. Thus f gives us a proper
local diffeomorphism, and hence a covering map, from the interior of
the disk bundle to CP2 −N ; but CP2 −N is simply connected, so f is
a diffeomorphism on the interior of our disk bundle. In particular, the
zero section of our disk bundle, which is sent to Q, has self-intersection
Q · Q = 22 = 4, so our disk bundle has first Chern class 4, and so must
be Ck−1 isomorphic to the unit disk bundle in O(4). q.e.d.
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Thus, we have constructed a family of curves �x ⊂ N , x ∈ S2, which
bound holomorphic disks. We now wish to consider the curves Cy ⊂ S2,
y ∈ N , obtained by considering the set of all �x’s passing through y,
and we would like to assert that these must be the geodesics of a unique
Zoll projective connection [∇] on M = S2. Our proof of this assertion
will hinge on:

Lemma 4.6. Let M be a smooth connected 2-manifold, and let
� : X → M be a smooth CP1-bundle. Let ρ : X → X be an involution
which commutes with the projection �, and has as fixed-point set Xρ an
S1-bundle over M which disconnects X into two closed 2-disk bundles
X± with common boundary Xρ. Suppose that D ⊂ TCX is a distribution
of complex 2-planes on X such that:

• ρ∗D = D;

• the restriction of D to X+ is Ck, k ≥ 1, and involutive;

• D ∩ ker�∗ is the (0, 1) tangent space of the CP1 fibers of �; and

• the restriction of D to a fiber of X has c1 = −3 with respect to the
complex orientation.

Then there is a unique Ck−1 projective structure [∇] onM such that D is
obtained from the associated involutive distributionD on PTCM given by
the recipe (7), pulled back by a uniquely determined Ck diffeomorphism
φ : X → PTCM which makes the diagrams

X
φ

M

PTCM

❏
❏

❏
❏❏

✡
✡

✡
✡✡✢

✲

and

X PTCM

X PTCM

ρ c

φ

φ

❄❄

✲

✲

commute, where c : PTCM → PTCM denotes the usual complex conju-
gation map.

Proof. Let us begin by noticing that, since D = ρ∗D is continuous
on the closed sets X+ and X−, it is continuous on all of X .

Now let L1 be the (0, 1) tangent space of the fibers. By hypothesis,
L1 ⊂ D, so that L2 = D/L1 is a well defined complex line bundle.
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Also notice that, since D ∩ ker�∗ = L1, the fibers of L2 are carried
injectively into TCM by �∗. We may therefore define a continuous map
φ : X → PTCM by z �→ �∗(L2|z) = �∗(Dz); moreover, this φ makes
the above diagrams commute.

Now let ζ be a smooth, fiber-wise holomorphic coordinate on X ,
and notice that the corresponding vertical vector field ∂/∂ζ is a smooth
section of D. Next, near any point of the interior of X+, let w be any
other local section of D which is linearly independent from ∂/∂ζ, and
then notice that the involutivity hypothesis [C1(D), C1(D)] ⊂ C0(D)
tells us that

∂

∂ζ
(�∗(w)) = �∗(L ∂

∂ζ

w) = �∗
([
∂

∂ζ
,w

])
≡ 0 mod �∗(w),

so that φ is fiber-wise holomorphic on the interior of X+. Since φ =
c ◦ φ ◦ ρ, it thus follows that φ is also fiber-wise holomorphic on the
interior X−. But since φ is also continuous across Xρ = X+ ∩ X−, this
implies that φ is actually fiber-wise holomorphic on all of X .

Now the restriction of L2 to �−1(x) is the pull-back, via φ, of the
tautological O(−1) line bundle over P(C ⊗ TxM) ∼= CP1. Since L1 is
the (0, 1) tangent space of �−1(x), and �−1(x) ∼= CP1, c1(L1) = −2
on any fiber of �. On the other hand, c1(D) = −3 on �−1(x), by
hypothesis. Adjunction therefore tells us that c1(L2) = −1 on any fiber.
However, c1(O(−1)) = −1 on CP1, and we have just observed that the
φ∗c1(O(−1)) = c1(L2). This shows that the fiber-wise degree of φ is
(−1)/(−1) = +1. But since φ is also fiber-wise holomorphic, it follows
that φ maps each fiber of X biholomorphically to the corresponding
fiber of PTCM . This in turn implies that φ is Ck on all of X , since
it sends any three pointwise-distinct local Ck sections of X+ to three
pointwise-distinct local Ck sections of PTCM , and φ is then algebraically
determined by its value along these sections.

Let us now try to analyze the distribution of complex 2-planes φ∗D
on Z = PTCM . To this end, let us begin by choosing an arbitrary
Ck−1 torsion-free affine connection ∇0 on M , and then considering the
corresponding Ck−1 integrable distribution of complex 2-planes D0 on
Z given by (7). By construction, φ∗D andD0 both intersect the vertical
in the (0, 1) tangent spaces of the fibers. Moreover, letting V0,1 denote
the (0, 1) vertical tangent bundle of PTCM , D0/V0,1 = (φ∗D)/V0,1 =
O(−1), where O(−1) of course denotes the tautological line bundle.
Thus there is a unique continuous section γ of V1,0 ⊗ O(1) such that
w ∈ D0 iff w + γ(π∗w) ∈ φ∗D; here we have used the notation V1,0 =
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V0,1 and V1,0 ⊗ O(1) = Hom(O(−1),V1,0). Moreover, the regularity
of D guarantees that γ is Ck−1 away from the real slice PTM ⊂ PTCM .
Now, let w be a Ck−1 local section of D0 for which π∗w is a fiber-wise
holomorphic section of O(−1); such a section may always be constructed
by multiplying a generic section by a suitable complex-valued function.
Set f∂/∂ζ = γ(π∗w). Then, away from the real slice, the involutivity
of φ∗D and D0 then tells us that[

∂

∂ζ
,w

]
≡ 0 mod

∂

∂ζ

and [
∂

∂ζ
,w+ f

∂

∂ζ

]
≡ 0 mod

∂

∂ζ
,

so that
∂f

∂ζ

∂

∂ζ
≡ 0 mod

∂

∂ζ
,

and hence ∂f/∂ζ = 0. This shows that γ is fiber-wise holomorphic
away from the real slice. But γ is also continuous across the real slice.
It follows that γ is fiber-wise holomorphic on all of PTCM .

Now any holomorphic section of (T 1,0
CP1) ⊗ O(1) ∼= O(3) arises

from a unique trace-free element of C
2 ⊗ 02(C2)∗. Thus γ is uniquely

expressible as a trace-free symmetric tensor field

g ∈ TCM ⊗02T ∗
CM.

Since γ is Ck−1 away from the real slice, it follows that g must be
Ck−1. Moreover, because φ∗D and D0 are both sent to their complex
conjugates by c, so is γ, and g is therefore real-valued. Setting ∇ =
∇0 + g now gives us a Ck−1 torsion-free affine connection on M such
that φ∗D coincides with the distributionD defined by (7). Since this last
requirement certainly also determines ∇ up to projective equivalence,
we are therefore done. q.e.d.

This allows us to finally show that our constructed families of holo-
morphic disks actually give us Zoll projective structures.

Theorem 4.7. Let N be any embedding of RP
2 into CP2 which is

C2k+5 close to the standard one. Let {�x | x ∈ S2} be the constructed
family of circles which bound holomorphic disks. For each y ∈ N , set

Cy = {x ∈ S2 | y ∈ �x}.
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Then there is a unique Ck Zoll projective structure [∇] on S2 for which
every Cy is a geodesic.

Proof. Let X+ be the unit disk bundle in O(4), and let X be its
double, obtained by identifying two copies of X+ along their boundaries.
Let X− be the second copy of X+, and let ρ : X → X be the smooth map
which interchanges X+ and X−. (Notice that one may think of X → S2

as the fourth Hirzebruch surface; thus, while X is itself diffeomorphic
to S2 × S2, the ‘real slice’ Xρ → S2 is the circle bundle of Euler class
4.)

Next, we consider the constructed family of holomorphic disks f :
X+ → CP2 with boundary on N . Let f

1,0
∗ : TCX+ → f∗T 1,0

CP2 be the
(1, 0) component of its derivative. Since f

1,0
∗ is Ck+1 close to the cor-

responding surjective morphism arising in the model case of the linear
embedding RP

2 ↪→ CP2, it is also surjective for every embedding in
an appropriate neighborhood with respect to the topology in question.
Thus we may arrange for D = ker f

1,0
∗ to be a Ck+1 distribution of com-

plex 2-planes on X+ for each of the embeddings in question. Moreover,
D is involutive on the interior of X+, since f is a diffeomorphism there,
and sends D to the involutive distribution T 0,1

CP2.
Along Xρ = ∂X+, note that D is spanned by ∂/∂ζ and the distribu-

tion of real lines tangent to the fibers of

f|∂X+ : Xρ → N.

We may therefore extend D to all of X by declaring it equal to ρ∗D
on X−. The resulting distribution is C0 close to the one corresponding
to the model case, and so has c1(D) = −3 on every fiber of X . Thus
the hypotheses of Lemma 4.6 are all fulfilled, and we therefore obtain a
unique Ck projective structure [∇] onM = S2 for which D corresponds
to D via φ. But φ sends Xρ diffeomorphically to PTM , and the fibers
of f|∂X+ are thereby sent to a foliation F of PTM by circles which is
horizontal with respect to [∇], and must coincide with the foliation by
lifted [∇]-geodesics. Because each fiber of Xρ →M is sent injectively to
an embedded circle �x ⊂ N , no leaf of F meets a fiber of µ twice. Since
each such leaf is also compact, the projective structure [∇] is therefore
Zoll. The space of geodesics Ñ of [∇] is then a compact manifold dif-
feomorphic to RP

2, and comes equipped with a tautological submersion
to N ; this map is necessarily a covering map, and hence is a diffeomor-
phism by comparison of fundamental groups. In particular, the Cy are
precisely the geodesics of the constructed projective structure. q.e.d.
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We now address the issue of determining when a given projective
structure can be represented by the Levi-Civita connection of a Rie-
mannian metric.

Suppose that g is a Zoll metric on M ≈ S2. Then, in analogy
with the construction on page 489, we obtain a preferred holomorphic
curve C ⊂ Z+ of genus zero and self-intersection +4 by considering
T 0,1M for the unique complex structure compatible with h and the
fixed orientation of M . The image Q = Ψ[C] of this Riemann surface is
then an embedded, nonsingular rational curve of self-intersection 4 in
in N ∼= CP2, and so must be a nonsingular conic.3 After a projective
linear transformation, we may thus identify Q with the smooth conic
given by

z2
1 + z

2
2 + z

2
3 = 0.

Henceforth, we will impose this choice as a matter of convention.
Now observe that the Riemann surface C is one of the two connected

components of the locus g(v,v) = 0 in PTCM . The complement of this
locus is doubly covered by

UTCM = {v ∈ TCM | g(v,v) = 1},

which we will think of as a fiber-wise complexification of the unit tangent
bundle of (M, g). However, UTCM may be canonically identified, using
g, with

UT ∗
CM = {η ∈ T ∗

CM | g−1(η, η) = 1},
and we may thus equip UTCM with a complex-valued 2-form Υ obtained
by restricting dΘ to UT ∗

C
M , where Θ = y1dx1+y2dx2 is the tautological

complex-valued 1-form on T ∗
C
M . Moreover, it is not hard to see that

D = kerΥ on UTCM , since, taking geodesic normal coordinates around
an arbitrary point, we have

g = (dx1)2 + (dx2)2 +O(|x|2),

so that

Υ = d

(
dx1 + ζdx2√

1 + ζ2 +O(|x|2)

)
=
dζ ∧ (ζdx1 − dx2)

(1 + ζ2)3/2
+O(x1, x2),

3Note that in this Zoll metric case, Lemma 4.2 may therefore be replaced with
the classical observation [3, Proposition V.4.3] that a compact complex surface which
contains a rational curve of positive self-intersection is birationally equivalent to CP2.
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and kerΥ is therefore spanned by ∂/∂ζ and Ξ = ∂/∂x1 + ζ ∂/∂x2 +
O(x1, x2). Away from the real slice, Υ is therefore a closed form of type
(2, 0) with respect to D, and hence is holomorphic; and, by the last
calculation, Υ⊗Υ descends to PTCM −C so as to have a pole of order 3
along C. On the other hand, the restriction of Υ to the unit circle bundle
of M is real-valued, and descends to the space of oriented geodesics by
symplectic reduction [4, 32]. Thus Υ gives rise to a continuous 2-form on
the double cover of CP2−Q which is holomorphic on the the complement
of N , and so holomorphic everywhere. Hence Υ ⊗ Υ is a well-defined
meromorphic section of K2 on CP2, with polar locus 3Q. It follows that

Υ = λ
z1 dz2 ∧ dz3 + z2 dz3 ∧ dz1 + z3 dz1 ∧ d2

(z2
1 + z

2
2 + z

2
3)3/2

(15)

for some constant λ ∈ C.
Now, by our construction of N , CP2−Q deform-retracts to N , and

also of course deform-retracts to the standard RP
2. Suitably oriented

double covers Ñ → N and S2 → RP
2 are therefore homotopic in the

universal (double) cover of CP2 −Q, since both generate π2(CP2 −Q).
Since Υ is closed, this tells us that∫

Ñ
Υ =

∫
S2

λ
z1 dz2 ∧ dz3 + z2 dz3 ∧ dz1 + z3 dz1 ∧ d2

(z2
1 + z

2
2 + z

2
3)3/2

= 4πλ .

However, the restriction of Υ to Ñ is real, so this shows that λ must
be real, too. We thus conclude that the Riemannian condition implies
that N is Lagrangian with respect to the sign-ambiguous symplectic
structure

ω = ±'m
(
z1 dz2 ∧ dz3 + z2 dz3 ∧ dz1 + z3 dz1 ∧ d2

(z2
1 + z

2
2 + z

2
3)3/2

)
(16)

on CP2 −Q.
As we shall now see, the converse is also true:

Theorem 4.8. Let N ↪→ CP2 be a totally real embedding of RP
2

which arises from a Ck,α projective structure [∇] on M ≈ S2, k ≥ 3,
α ∈ (0, 1). Then there is a Ck+1,α Riemannian metric g on M whose
Levi-Civita connection � belongs to the projective class [∇] iff, after a
PSL(3,C) transformation of CP2, the surface N avoids the conic Q,
and is Lagrangian with respect to the signed symplectic structure ω on
CP2−Q. Moreover, such a Lagrangian embedding completely determines
the metric g up to an overall multiplicative constant.
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Proof. In light of our previous discussion, it suffices to check the as-
sertion in the ‘if’ direction. Thus, suppose the surface N corresponding
to a given projective structure [∇] on M = S2 does avoid the conic Q
and is Lagrangian with respect to the sign-ambiguous symplectic struc-
ture ω defined by (16). Because N is weakly unknotted by Theorem 4.4,
there is a diffeomorphism f : CP2 → CP2 which is C0-isotopic to the
identity and which carries carries RP

2 to N , per the remark on page 497.
Since f−1

∗ therefore identifies H2(CP2 − N,Z) → H2(CP2,Z) with the
injective homomorphism H2(CP2 − RP

2,Z) → H2(CP2,Z), the homol-
ogy class of Q therefore generates H2(CP2−N,Z). On the other hand,
the divisor defined by the interior of any one of our holomorphic disks
generates H2(CP2−N,Z) = H2(U+,Z). Hence each of the holomorphic
disks associated with [∇] has intersection number +1 with the holomor-
phic curve Q, and hence geometrically intersects Q transversely in a
unique point. This gives us a diffeomorphism Q ≈ M , and hence fixes
a conformal structure [g] on M . Since C = Ψ−1(Q) is a holomorphic
curve in U+, and because the complex structure of U+ is of class Ck,α,
elliptic regularity tells us that C is a Ck+1,α section of U+. But U+

is precisely the bundle of oriented almost-complex structures on M , so
this construction defines a Ck+1,α almost-complex structure onM . Our
diffeomorphism M → Q is holomorphic with respect to this almost-
complex structure, and so is a map of class Ck+2,α by elliptic regularity.
Hence the constructed conformal structure [g] is of class Ck+1,α.

Let (x1, x2) be Ck+2,α isothermal local coordinates on (M, [g]), ob-
tained for free by taking x1 + ix2 to be a complex coordinate system
on Q. Relative to these coordinates, the conformal structure [g] is
then represented by the Euclidean metric (dx1)2 + (dx2)2, and the loci
ζ = ±i represent C = Ψ−1(Q) ⊂ U+ and its complex conjugate C ⊂ U−.
The Ck,α function P (x, ζ) of Equation (9) must therefore vanish when
ζ = ±i, and we may therefore uniquely define a 1-form

γ = γ1 dx
1 + γ2 dx

2

of class Ck,α on our coordinate domain by requiring that

P (x, ζ) = (1 + ζ2)(γ2 − γ1ζ).

Setting
Γj

k� = γkδ
j
� + γ�δ

j
k − γjδk�,

we then may observe that P (x, ζ) is related to the Γ’s by Equation (9).
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Hence the torsion-free connection � defined4 by these Christoffel sym-
bols in particular gives rise to the same foliation F of the real locus
PTM defined by P (x, ζ). It follows that � belongs to the given projec-
tive equivalence class [∇], since it defines the correct family of geodesics.

For some choice of real constant λ > 0, let Υ now be defined by
Equation (15). Pull this singular, multi-valued holomorphic (2, 0)-form
back to U+ ∪ PTM via Ψ. The resulting 2-form annihilates D, and we
therefore have

Ψ∗Υ = v(x, ζ)
(
dζ − P (x, ζ)dx1

)
∧
(
dx2 − ζdx1

)
(17)

for some unknown differentiable nonzero function v which is defined, up
to sign, in the region 'm ζ ≥ 0, ζ �= i. Notice that v is real along the
locus 'm ζ = 0, because by assumption 'm Υ annihilates TN . Now
recall that Υ is closed, and observe that the condition d(Ψ∗Υ) = 0 can
be written as the pair of equations

∂v

∂ζ
= 0(18)

and
∂

∂ζ

(
vP
)
+
∂f

∂x1
+ ζ

∂v

∂x2
= 0.(19)

Since Υ ⊗ Υ is meromorphic on CP2, with polar locus 3Q, Equation
(18) tells us that, for each fixed x = (x1, x2), v2(x, ζ) is meromorphic
in ζ = ξ + iη for η > 0, with only one pole, located at ζ = +i and of
order 3. Because v2 is real along η = 0, we may extend v2 to all ζ so as
to obtain a meromorphic function whose only poles are located ζ = ±i,
both with order 3. However, we can also apply the same arguments to
the function

v̂(x, ζ̂) = −v(1/ζ̂)
ζ̂3

obtained in (17) by interchanging x1 and x2, and replacing ζ with ζ̂ =
1/ζ. Thus v2 must have a zero of order 6 at ζ = ∞, and we conclude
that

v(x1, x2, ζ) = ± u(x1, x2)
(1 + ζ2)3/2

4We remark in passing that � is actually the unique element of [∇] which is also
a Weyl connection for [g], in the sense that that ∇vg ∝ g ∀v. Notice that the
construction so far only depends on the choice of a conic Q avoiding N , and so can
be carried out, e.g., for any Zoll projective structure on S2 which is sufficiently close
to the standard one.
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for a unique positive differentiable function u(x1, x2). Equation (19)
thus tells us that

(1 + ζ2)3/2u(x1, x2)
∂

∂ζ

(
γ2 − γ1ζ

(1 + ζ2)1/2

)
+
∂u

∂x1
+ ζ

∂u

∂x2
= 0,

or in other words that

(γ1 + γ2ζ)u(x) =
∂u

∂x1
+ ζ

∂u

∂x2
.

Thus γ = d log u, and � is therefore exactly the Levi-Civita connection
of the metric

g = u2
[
(dx1)2 + (dx2)2

]
.

Moreover, since γ is Ck,α, it follows that u and g are of class Ck+1,α.
Direct calculation now reveals that the restriction

ω̂ = d

(
u dx1 + uξ dx2√

1 + ξ2

)

of the symplectic form of T ∗M to the unit cotangent bundle exactly
coincides with the restriction of our expression (17) for Ψ∗Υ to the real
slice ζ = ξ. In particular, our construction of g is therefore coordinate-
independent, because the set of unit covectors of g is precisely the image
of Ψ∗Υ(∂/∂θ, ·), where

∂

∂θ
= (1 + ξ2)

∂

∂ξ

denotes the vertical vector field on PTM which generates the standard
SO(2) action associated with the conformal class [g]. q.e.d.

Now the double cover of CP2 −Q may explicitly be identified with
the affine quadric A ⊂ C

3 given by

z2
1 + z

2
2 + z

2
3 = 1,

and on A the symplectic form (16) simplifies to become

ω = 'm
(
z1 dz2 ∧ dz3 + z2 dz3 ∧ dz1 + z3 dz1 ∧ dz2

)
.

Now set 
z = 
x+i
y, and observe thatA is defined by the pair of equations


x · 
y = 0, |
x| =
√
1 + |
y|2
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for 
x, 
y ∈ R
3. This allows us to identify A with

T ∗S2 = {(
q, 
p) ∈ R
3 × R

3 | 
q · 
q = 1 , 
q · 
p = 0}

via the diffeomorphism G : T ∗S2 → A given by


x =
√
1 + |
p|2 
q,


y = 
p× 
q.

The pull-back G∗ω is then just the classical symplectic structure
∑
dpj∧

dqj on T ∗S2. Indeed, since G is SO(3)-equivariant with respect to the
obvious, symplectic SO(3)-actions on T ∗S2 and A ⊂ C

3, it suffices to
check this assertion along the curve 
p = (0, t, 0), 
q = (0, 0, 1), where the
derivative G∗ acts by

∂

∂p1
=: e1 �→ ẽ1 := − ∂

∂y2
∂

∂q1
=: e2 �→ ẽ2 :=

√
1 + t2

∂

∂x1
− t ∂
∂y3

∂

∂p2
=: e3 �→ ẽ3 :=

∂

∂y1
+

t√
1 + t2

∂

∂x3

∂

∂q2
− t ∂
∂p3

=: e4 �→ ẽ4 :=
√
1 + t2

∂

∂x2

and where the components of
∑
dpj ∧ dqj and ω relative to the bases e

and ẽ, respectively, are in both cases just the entries of the matrix
1

−1
1

−1

 .
We remark, in passing, that the existence of the symplectomorphism
G illustrates a general result due to Weinstein [31]: any Lagrangian
submanifold X of a symplectic manifold Y has a tubular neighbor-
hood which is symplectomorphic to a neighborhood of the zero section
of T ∗X, equipped with its classical symplectic form. In the present
case, however, one should also observe that, because our formula for
G involves the cross product in R

3, the nontrivial deck transformation

z → −
z of A becomes the involution of T ∗S2 given by φ �→ −a∗φ, where
a : S2 → S2 is the antipodal map.
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Now any embedding S2 ↪→ T ∗S2 which is C1 close to the zero section
is of course the graph of a 1-form φ on S2. The condition for such a
graph to be Lagrangian is that dφ = 0, and, because H1(S2) = 0, this
is equivalent to saying that φ = df for some function f : S2 → R. On
the other hand, in order for this S2 ↪→ A to double-cover an embedding
RP

2 ↪→ CP2−Q we must require that φ = −a∗φ, and in the Lagrangian
case there will then be a unique f with f = −a∗f such that φ = df . Thus
smooth Zoll metrics g of total area 4π on S2 near the standard metric
h correspond to smooth odd functions f : S2 → R, f(−
x) = −f(
x).
This of course simply reconfirms the functional freedom first predicted
by Funk [12] and subsequently rigorously demonstrated by Guillemin
[15].

5. Concluding remarks

A number of important technical issues remain to be resolved in
connection with our treatment of Zoll structures on S2. We have shown
that one can associate a totally real embedding of RP

2 in CP2 with each
Zoll projective connection on S2, and that, conversely, those embeddings
which are sufficiently close to the standard one can be used to determine
a projective connection on S2. However, one loses a ridiculous number
of derivatives in following the story full circle, back to one’s starting
point. Ideally, one might hope that Ck,α Zoll projective structures on
S2 should exactly correspond to Ck+1,α surfaces N ⊂ CP2. Alas, we are
at present quite far from being able to make such an assertion in either
direction.

What is worse, we do not at present know that our family of disks
either exists or is unique when N is very far from the the standard
RP

2. Nonetheless, optimism might well be appropriate in the present
instance. Let us thus throw caution to the wind, and hazard the follow-
ing:

Conjecture 5.1. The moduli space of Zoll metrics on S2 is con-
nected. Moreover, once we introduce a “marking” consisting of an or-
thonormal frame at some base-point, the moduli space of marked Zoll
Riemannian structures of fixed total area is in natural 1-1 correspon-
dence with the set of totally real Lagrangian embeddings RP

2 ↪→ (CP2−
Q, ω) which are homotopic to the standard embedding.

In fact, while it seems clear enough that the set of N ⊂ CP2 carrying
suitable families of embedded holomorphic disks is open, there would
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be numerous technical difficulties involved in trying to show that it
is also closed — e.g., sequences of embedded disks may have singular
limits, and one tends, in the limit, to lose regularity of the dependence
of families on parameters . Moreover, one would need to know that the
relevant set of Lagrangian RP

2’s in (CP2 −Q, ω) is actually connected
for this program to ultimately succeed. Fortunately, however, the latter
is similar to problems already solved by Eliashberg [8, 9] and his co-
workers, so there is ample reason to hope that such a program might be
viable.

One might also want to hazard an analogous conjecture about Zoll
projective structures. However, this would seem to be a considerably
more difficult problem, as there is as yet no good mechanism for trying
to show that two weakly unknotted embeddings of RP

2 in CP2 are ac-
tually isotopic. On the other hand, Gromov’s h-principle [14, 8] at least
provides a rather complete reduction of questions concerning isotopy
through totally real submanifolds to questions of isotopy in the more
elementary sense.

It seems improbable that the methods we have developed here will
shed much light on higher-dimensional Zoll manifolds, at least in the
near term. However, our techniques certainly have obvious extensions
which could be brought to bear on Zoll-like Lorentzian 3-manifolds
[16], special classes of split-signature Einstein manifolds [22] and cer-
tain problems in Yang-Mills fields [23]. We look forward to watching
the further development of our circle of ideas in connection with these
problems.

Appendix A: Axisymmetric Zoll structures

The main result of this appendix is a formula for the general ax-
isymmetric Zoll projective structure on S2 obtained by perturbing the
standard round structure. We first give the formulæ for the connec-
tion, and prove that it gives rise to a Zoll projective structure. We
then go on to show how these examples arise from the twistor corre-
spondence. The inclusion of the latter discussion is fundamentally more
a matter of honesty than of logical exposition, as it primarily reveals
how these examples were in fact discovered. However, we also hope
that the reader will find this discussion useful insofar as it provides a
carefully worked-out family of concrete examples which illustrate the
twistor correspondence which plays such an essential rôle in the body
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of the paper.

A.1 Axisymmetric examples

In order to introduce the formulae, we first recall Zoll’s original family
of axisymmetric metrics expressed here in spherical polar coordinates

g = (F − 1)2dφ2 + sin2 φ dθ2.

This metric is the same as that given by (1), after the coordinate trans-
formation z = cosφ and the substitution F (φ) = −f(cosφ).

We will express the general Zoll projective structure in terms of
the difference between a compatible affine connection and the metric
connection of the above metric. Consider the orthonormal frame

(e1, e2) =
(

1
F − 1

∂

∂φ
,

1
sinφ

∂

∂θ

)
and dual co-frame (θ1, θ2) = ((F − 1)dφ, sinφdθ). In this frame, it is
straightforward to calculate that the connection 1-form is

ω =
cotφ
F − 1

θ2.

The associated Levi-Civita connection, ∇g, turns out to give the most
general axisymmetric Zoll projective structure that is compatible with
a metric (at least close to the round metric).

In general, a compatible torsion-free affine connection for a projec-
tive structure can be given by a connection ∇ such that, with

γk
ij =

〈
θk, (∇i −∇g

i )ej

〉
,

γk
ij is symmetric on the ij indices (so that ∇ is torsion-free) and trace
free; this last condition corresponds to fixing the connection in the pro-
jective equivalence class by requiring that it preserve the metric volume
form.

The general axisymmetric Zoll projective structure close to the round
sphere will turn out to be given by the choice

γi
11 = 0 , γ1

22 = −h
2 cotφ
F − 1

, γ1
21 =

1
3(F − 1)

(
∂h

∂φ
− 2h
sinφ cosφ

)
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where all the other components of γk
ij are determined by the trace and

symmetry conditions and h = h(φ) is a smooth function of φ vanishing
in some small neighborhood of 0 and π and odd under φ→ π − φ.

This information can be encapsulated in the geodesic spray. This is
the vector field on the projective tangent bundle PTS2 that at (v, x) ∈
PTxS

2 is the horizontal lift of the vector v at x. We parametrize the
fiber of PTS2 by ζ corresponding to the vector e1 + ζe2. Then the
geodesic spray from the projective structure above is given by

(20) Ξ =
∂

∂φ
+
(
F − 1
sinφ

)
ζ
∂

∂θ

− ζ
(
(1 + ζ2(1 + h2)) cotφ− ζ

(
∂h

∂φ
− 2h
sinφ cosφ

))
∂

∂ζ

on PTS2 defines a Zoll projective structure if the smooth functions
F (φ) and h = h(φ) are respectively odd and even under φ → π − φ.
For regularity at φ = π/2, we further require that h should vanish
(and hence to second order) at φ = π/2. For regularity at φ = 0, π,
we assume that F and h vanish in some small neighborhood of these
values. This is actually stronger than necessary, but makes the proof of
the Zoll property more straightforward; the minimal requirement would
be to just stipulate that they be smooth functions of cosφ that vanish
at φ = 0 and π.

The metric case occurs when h = 0, and in this case there is the pre-
ferred overall scaling factor that gives the arc-length parameterization;
this arises on dividing by (F −1)

√
(1 + ζ2). To see that the above gives

a multiple of the geodesic spray in this case, coordinatize the tangent
bundle by (µ1, µ2)→ µ1e1+µ2e2. Then the horizontal lift of e1 is just e1

since ω(e1) = 0 and the horizontal lift of e2 is e2−ω(e2)(µ1
∂

∂µ2
−µ2

∂
∂µ1

).
Thus, using the affine coordinate ζ = µ2/µ1 on the projective tangent
bundle, the geodesic spray will be

e1 + ζ
(
e2 − (1 + ζ2)

cot θ
F − 1

∂

∂ζ

)
and this can be seen to be proportional to the formula given above when
h = 0 as required. If we wish to normalize the horizontal part to have
unit length, then we must divide by

√
(1 + ζ2) and this will give the

overall factor required to give proper length parameterization.
We first give a direct proof of the Zoll property, and then in the

subsequent sections we show how the formula arises from the twistor
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construction. (The direct proof of the Zoll property below in fact will use
equations arising in the twistor derivation below, but it is easily checked
that these follow directly from the form of the geodesic spray above. It is
difficult, however, to see how they might have been anticipated without
the twistor construction.)

Theorem A.1. Equation (20) defines a Zoll projective structure
for all smooth odd functions F and even functions h with h(π/2) = 0
and both h and F vanishing in some neighborhood of φ = 0.

The proof is divided into two parts. We first analyze the flow of
the projection of the geodesic spray under q : PTS2 → RP

1 × [0, π],
q(ζ, φ, θ) = (ζ, φ), to the space of orbits of ∂/∂θ in PTS2. We show first
that the orbits of the projected flow are circles, and secondly that the
lifts of these to orbits of the full geodesic spray are also circles in PTS2.

1) We first study the integral curves of q∗Ξ for (ζ, φ) ∈ RP
1×[0, π/2].

Introduce the angular coordinate ψ ∈ [0, π) on RP
1 by ζ = tanψ so that

ψ is a smooth coordinate near ζ =∞. Then, the flow becomes

φ̇ = sinφ cosψ ,

(21)

ψ̇ = − sinψ
(
(1 + h2 sin2 ψ) cosφ− cosψ sinψ

(
∂h

∂φ
sinφ− 2h

cosφ

))

where φ̇ = dφ/dt for the time parameter t along the flow defined by

d

dt
= sinφ cosψq∗Ξ .

These additional factors yield a smooth flow by inspection noting in
particular that our requirement that h(π/2) = 0 implies that h/ cosφ
is smooth. Note also that this flow is invariant under the reflection in
φ = π/2: (ψ, φ, t)→ (ψ, π − φ,−t).

[The perceptive reader might have noticed that the direction of the
flow changes sign across the identification of ψ = π with ψ = 0. Al-
though the flow defines a smooth distribution in the projective tangent
bundle away from the fixed points, to obtain a flow with continuous
direction, we would need to work on the double cover obtained by fac-
toring the tangent bundle by the positive scalings. This will not be a
problem in the following as ψ = 0 or π is a flow line.]



522 c. lebrun & l.j. mason

Lemma A.2. The flow of q∗Ξ has fixed points at (ψ, φ) = (0, 0),
(0, π) and (π/2, π/2). The integral curves of q∗Ξ are smoothly embed-
ded curves in (ζ, φ) ∈ RP

1 × [0, π] on which, for φ ∈ [0, π/2] (resp.
φ ∈ [π/2, π]) the coordinate φ decreases (resp. increases) from π/2 to
a unique minimum (resp. maximum) value and then increases (resp.
decreases) again to π/2. The extrema occur when ψ = π/2.

The fixed points are where both the right-hand sides vanish, so that,
from φ̇ = 0 we obtain either φ = 0, π or ψ = π/2. At φ = 0, π, h = 0 and
so we find ψ̇ = ∓ sinψ, i.e., a fixed point at ψ = 0(= ζ). At ψ = π/2,
we find that ψ̇ = 0 iff cosφ = 0, i.e., φ = π/2.

It is clear from the first of Equations (21) that for φ ∈ (0, π), φ̇
only vanishes when ψ = π/2. The second derivative at ψ = π/2 can be
calculated to give

∂2φ

∂ψ2
= (1 + h2) cotφ

and it can be seen that this second derivative ∂2φ/∂ψ2 is positive for
φ ∈ (0, π/2) and so this must be a minimum. Similarly on φ ∈ (π/2, π),
φ can only be a maximum at a stationary point. Thus, on an integral
curve in φ ∈ (0, π/2), φ will descend to a unique minimum value, at
which ζ =∞ and then increase again. q.e.d.

The key issue now is as to whether we can make these integral curves
join up into a circle. Firstly note that ψ = 0 and φ = 0, π are all flow
lines, and these are the only flow lines limiting onto the fixed points (0, 0)
and (0, π) as we have assumed that h = 0 in a neighborhood of φ = 0
and of π, and this means that the flow lines in those neighborhoods are
precisely those of the flat case, and these are precisely the level curves
of sinφ sinψ.

Let us suppose that a curve starts at some value of ψ ∈ (0, π/2).
Then φ will descend to a minimum and either (a) increase up to π/2
again, or (b) the minimum will be φ = 0. In case (a), the reflection of
the orbit under the involution (ψ, φ, t)→ (ψ, π− φ,−t) will be an orbit
in φ ∈ (π/2, π) and this will join up to make a circular orbit. Case (b)
will be the case ψ = 0 since the orbit must intersect φ = 0 at ψ = 0,
since the complement of that point in φ = 0 is a regular orbit on its
own, but the only orbit in a neighborhood of φ = 0 that intersects this
fixed point is ψ = 0 (or φ = 0).

Thus, all the orbits of the flow are circles, except the above men-
tioned fixed points and special orbits that limit onto the fixed points;
this gives the flow diagram 1.
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(0,0)

ψ

 (0,π)   

φ (π,0)

(π,π)

Figure 1: The flow diagram for the projected flow.

2) We now wish to show that these orbits in the (ψ, φ) plane only
lift to give closed S1 orbits in the full projective tangent bundle of the
sphere. In the above coordinates, the equation for θ will become

θ̇ = (F − 1) sinψ .(22)

In order for the geodesics to be circles, we need to prove that the integral
of the right-hand side around an integral curve of q∗Ξ is 0 modulo 2π
for each integral curve. The first and second terms in the right-hand
side of Equation (22) are respectively odd and even under θ → π − θ.
Since the integral curves of q∗Ξ are even, the first part will automatically
integrate to zero. We need to show, then, that the second part will in
fact integrate to 0 modulo 2π on all integral curves.

To integrate θ̇ = − sinψ, from Equations (26) and (27) in the lifting
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part of the twistor construction, we note that, with 1/a = (h− i)| cosφ|

ω =
1
2
arg

(1− ζ/a)
1− ζ/a

satisfies
ω̇ = − sinψ .

(We leave it to the assiduous reader to show that Equations (26) and (27)
below follow independently of the twistor construction.) Thus, θ = ω is
the solution to the even part of the θ flow. However, ω is the argument
of a single valued complex function on the (ψ, φ)–plane, and so, when
we do a complete circuit around an integral curve of q∗Ξ returning to
our original point, the argument must return to zero modulo 2π. q.e.d.

A.2 The twistor construction in the axisymmetric case

In §A.2.1 we study the structure of the action of axisymmetry on the
twistor space and the correspondence for the round metric. In §A.2.2
we give the axisymmetric deformations of the real slice. The subsequent
subsection §A.2.3 is devoted to constructing the holomorphic disks, and
then finally in §A.2.4 the associated projective structure is constructed.

A.2.1 The round sphere

We consider the action of the standard rotation on R
3, its complexified

action on C
3 and induced action on CP2. With coordinates (z, z̃, z0),

the S1 action is generated by the real part of the holomorphic vector
field

∂

∂θ
= i

(
z
∂

∂z
− z̃ ∂
∂z̃

)
,

where R
3 is taken to be z̃ = z and z0 = z0. If we remove the the fixed

points (1, 0, 0), (0, 1, 0) and (0, 0, 1), the generic orbits form the pencil
of conics (1−w)z2

0 = wzz̃ that are tangent to the line z = 0 at (0, 1, 0)
and also to the line z̃ = 0 at (1, 0, 0). The degenerate orbits consist of
the double line z0 = 0 at w = 0 and the pair of lines z = 0 and z̃ = 0
at w = 1. They determine a fibration of CP2 − {(1, 0, 0), (0, 1, 0)} over
CP1 with affine coordinate w, and, away from the exceptional fibers at
w = 0, 1, we can coordinatize CP2 with (w, ξ) = (z2

0/(z
2
0 + zz̃), z/z0). In

these coordinates ∂
∂θ = iξ ∂

∂ξ .
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The real slice, RP
2, is given by w ∈ [0, 1] and |ξ|2 = −1+1/w. Note

that the orbit z0 = 0 intersects RP
2 in a real line, whereas the orbit

{z = 0} ∪ {z̃ = 0} intersects RP
2 in a single point. All the other real

orbits are contractible circles in RP
2.

Introduce spherical polar coordinates (φ, θ) on S2 so that the sym-
metry is ∂

∂θ . We can coordinatize the fibers of the projective tangent
bundle by ζ so that ζ corresponds to the vector ∂

∂φ + ζ
sin φ

∂
∂θ . (These

coordinates will then only break down at the fixed points.) The lines
in CP2 corresponding to points of S2 are 2z0 = tanφ(eiθz + e−iθz̃). In
terms of ζ, and the coordinates (w, ξ) on CP2, the holomorphic disks
are the images of the upper-half plane in ζ under

w =
ζ2 sin2 φ

1 + ζ2
, ξ = eiθ

ζ cosφ+ i
ζ sinφ

,(23)

and when ζ is real the image lies in RP
2.5

It is worth noting for later use that, on these disks,

ζ =
√
w/(sin2 φ− w)

defines the square root in the upper-half plane.
In these coordinates, the geodesic spray takes the form:

Ξ =
∂

∂φ
+

ζ

sinφ
∂

∂θ
− cotφ(1 + ζ2)ζ

∂

∂ζ
.

It should also be noted that the conserved quantity associated to
the axial symmetry ∂

∂θ and metric g = dφ2 + sin2 φdθ2 is

g( ∂
∂θ ,

∂
∂φ + ζ

sin φ
∂
∂θ )√

g( ∂
∂φ + ζ

sin φ
∂
∂θ ),

∂
∂φ + ζ

sin φ
∂
∂θ )

=
√
w .

This formula can also be derived intrinsically on CP2; namely,
√
w is the

Hamiltonian for ∂
∂φ using the symplectic form associated to the conic Q

defined in Equation (16).

5A global and invariant formulation can be obtained in index notation by letting
zi, i = 1, . . . 3 be homogeneous coordinates on CP2, and xi coordinates on R

3, then
the open disk in CP2 corresponding to xi on S2 is given by the condition that izizjε

ijk

be a positive multiple of xk.
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A.2.2 Deformation of the real slice

We will represent a circle invariant deformed embedding of RP
2 into

CP2 as the set given by

w = γ(φ) , and |ξ|2 = eg(φ)

∣∣∣∣1− γ(φ)γ(φ)

∣∣∣∣
for φ ∈ [0, π/2]. Here g is a smooth real function with compact support
in (0, π/2) and γ : [0, π/2]→ C is a smooth embedded curve from w = 0
to w = 1 such that γ(φ) = sin2 φ on the complement of some compact
subset of (0, π/2].

In the homogeneous case, γ(φ) = sin2 φ, and g = 0. The com-
pact support of the deviation from the homogeneous case will guaran-
tee smoothness of this deformation near the degenerate fiber z0 = 0. In
particular, the embedding of RP

2 into CP2 near the fixed line z0 = 0,
is the same as the canonical embedding, and so the holomorphic disks
near those at z0 = 0 will be those above in Equation (23) and so we will
not need to concern ourselves with singular behavior there.

These assumptions amount to the assumption that our S1–invariant
Zoll projective structure on S2 will have two fixed points corresponding
to φ = 0, π in a neighborhood of each of which the projective structure
will be that of the round sphere, and exactly one of the S1 orbits will
be a geodesic with φ = π/2.

In the metric case we will have that γ(φ) = sin2 φ since the square
of the conserved quantity is determined by the geometry of the action
on CP2 relative to its fixed symplectic structure. It will necessarily be
equal to w, and will be real on the real slice. The nontrivial information
in this case is contained only in the function g(φ).

For later convenience, we extend γ and g to φ ∈ [0, π] by γ(φ) =
γ(π−φ) and g(φ) = g(π−φ). The data of the location of the deformation
of RP

2 could be represented more economically by expressing the curve γ
as a graph of the imaginary part over the real interval [0, π/2]. However
the formulation above will allow us to make a convenient choice of the
coordinate φ later.

A.2.3 Construction of the holomorphic disks

The problem of finding the deformed disks with boundary on the de-
formed real slice decomposes into two parts: firstly that of finding the
projection of the disk to the w–Riemann sphere with boundary on the
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projection of the real slice, the curve γ, and secondly, the problem of
lifting the disk to CP2.

1) The projected disks must have their boundary on some subinterval
of the curve γ. This subinterval must include the end at φ = 0: this
end corresponds to the line z0 = 0 and each boundary of a disk must
be homologous to this line, but because these are all generators of the
homology of RP

2, they must intersect each other at least once.
Thus, the first task is to find, for each φ ∈ [0, π/2], a map ζ →

w(ζ, φ) from the upper half plane into the w-Riemann sphere such that
the boundary of the disk is mapped to the image of the interval [0, φ]
under γ.

To analyze this, first consider the conformal map

w → v(w, φ) =
√

w

γ(φ)− w ,

where we fix the branch of the square root by requiring that, near w = 0,
v
√
γ(φ) lies in the upper-half-plane (there is no obstruction to choosing√
γ(φ) as φ varies so that it is positive for small φ). In the v-Riemann

sphere, the image of γ([0, φ]) is a continuously differentiable embedded
circle tangent to

√
γ(φ)× the real axis at the origin and passing through

the point v = ∞. It will be smooth except possibly at 0 and ∞. Thus
the branch defined above is well-defined and determines a region Vφ in
the v-plane as the image of the complement of γ([0, φ]).

By the Riemann mapping theorem there will exist a conformal map
from the upper-half-plane in ζ to Vφ and hence to the complement of
γ([0, φ]) in the w-Riemann sphere. It will be smooth with nonvanishing
derivative up to and including the boundary on the v-Riemann sphere
except possibly at 0 and ∞ where it is nevertheless guaranteed to be
continuous [30, p. 340]. It is worth emphasizing that while Proposi-
tion 4.5 guarantees that the disks will be smoothly embedded in CP2,
but they will be tangent to the fibers of the projection along the orbits
of the complexified axisymmetry at w = 0 and γ(φ). Hence, the projec-
tion of the disks to the w-Riemann sphere will be smooth up to γ([0, φ])
except at the points 0 and γ(φ) which will be ramification points of or-
der 2. Using a Möbius transformation of the upper-half plane to itself,
this map w(ζ, φ) can be chosen so that

w(ζ, φ) = ζ2 sin2 φ+O(ζ3) ,

at ζ = 0 and w(ζ, φ) = γ(φ)−k(φ)γ′(φ)ζ−2+O(ζ−3) at ζ =∞ for some
real k(φ) > 0.
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For later use we define the function s(ζ, φ) for ζ ∈ R, φ ∈ [0, π] by
the condition that

γ(s(ζ, φ)) = w(ζ, φ).

In the following we extend both w(ζ, φ) and s(ζ, φ) to φ ∈ [0, π] so that
they are even functions under φ→ π − φ.

2) We now wish to find the lift of these conformal mappings to disks
in CP2 with boundary on the deformed real slice. To do this we need
to obtain ξ(ζ, φ, θ) holomorphic on the upper-half-plane in ζ such that,
for ζ ∈ R,

|ξ(ζ, φ, θ)|2 = eg(s(ζ,φ))

∣∣∣∣1− γ(s(ζ, φ))γ(s(ζ, φ))

∣∣∣∣ .
By symmetry we must have ξ(ζ, φ, θ) = eiθξ(ζ, φ, 0).

The orbits of the complexified axisymmetry corresponding to w �=
0, 1 are regular orbits. Thus for w(ζ, φ) �= 0, 1, the lift ξ(ζ, φ, θ) cannot
meet ξ = 0 or∞ since ξ = 0 is part of the orbit w = 1 and ξ =∞ is the
orbit w = 0. However, as w → 0 we must have, by the above condition
on the real slice, |ξ|2 → |(1 − w)/w| → ∞. Furthermore, if φ = π/2,
w = 1 is a real point on the boundary of the conformal mapping and
must therefore lift to the real point ξ = ξ̃ = 0. Conversely, at w = 1,
but φ �= π/2, the point w = 1 is not a real point on the disk and so we
cannot have both ξ = 0 and ξ̃ = 0. Hence either we will have ξ = 0
and ξ̃ �= 0, or ξ �= 0 and ξ̃ = 0. We can therefore assume that, by
continuity from the round sphere case, ξ �= 0 for φ ∈ [0, π/2), and ξ̃ �= 0
for φ ∈ (π/2, π].

By taking logs, the problem of lifting the conformal maps to disks in
CP2, can be reduced to an abelian problem. However, we cannot proceed
completely naively as we will still have ξ → ∞ as w → 0, although we
can guarantee that either ξ or ξ̃ will be nonvanishing. We work first on
φ ∈ (0, π/2) so that ξ �= 0, and divide that problem into a part that is
regular on taking logs, and one that can be handled explicitly. Set

ξ(ζ, φ, θ) = eiθ+G(ζ,φ)Γ(ζ, φ)

then we wish to find G(ζ, φ) that is holomorphic for 'mζ > 0 such that
for ζ real

.eG(ζ, φ) = g(s(ζ, φ))
and similarly we wish to find Γ(ζ, φ) holomorphic on the upper half
plane in ζ, such that for ζ real

|Γ(ζ, φ)|2 =
∣∣∣∣1− γ(s(ζ, φ))γ(s(ζ, φ))

∣∣∣∣ .
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The first problem is solved in a standard way by a contour integral along
the real axis

G(ζ, φ) =
1
2πi

∮ .eG(µ, φ)
µ− ζ dµ− 1

2πi
P.V.

∫ .eG(µ, φ)
µ

dµ

where the purpose of the last term is to remove the ambiguity associated
with the addition of a constant (in ζ but perhaps with φ–dependence)
to the imaginary part of G. This choice ensures 'mG(0, φ) = 0.

The problem for Γ cannot be solved so simply in the above way.
First we define the complex function a(φ) in the upper half plane by
the condition w(a, φ) = 1, i.e., the image in the ζ plane of w = 1. Then
the function

Γ(ζ, φ) = i

√
(1− ζ/a)
(1− ζ/a)

(1− w)
w

makes sense for ζ in the upper half plane since the function whose
root is taken does not vanish on the upper half plane . We choose
the branch for the square root that tends towards i/ζ sinφ as φ and ζ
tend to zero. Then Γ as defined is nonvanishing, holomorphic in the
upper half plane and has the required modulus when ζ ∈ R as then
|(1− ζ/a)/(1− ζ/a)| = 1.

For φ ∈ [π/2, π] we work with ξ̃ as that will be nonzero on this
interval. However,

|ξ̃(ζ, φ, θ)|2 = |1− w|2
|w2ξ2| = e−g(s(ζ,φ) |1− γ(s, ζ, φ)|

|γ(s, ζ, φ)| .

and so the solution will be

ξ̃ = e−iθ−G(ζ,π−φ)Γ(ζ, π − φ) ,
where the Γ and G are the functions obtained above.

A.2.4 Construction of the projective structure

To reconstruct the corresponding projective connection on S2, we wish
to construct the vector field determining the geodesic spray on the cor-
respondence space, PTS2. We use coordinates (φ, θ) on S2, and ζ ∈ R

on the fibers of PTS2. We construct the geodesic spray Ξ in two steps:

1) Under the projection q : (ζ, φ, θ) → (ζ, φ), Ξ projects to q∗Ξ =
∂
∂φ − p(ζ, φ) ∂

∂ζ for some p(ζ, φ). The function w is constant along the
geodesic spray so that q∗Ξw = 0 which gives p = ∂φw/∂ζw.
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When ζ ∈ R, w = γ(s(ζ, φ), so

p(φ, ζ) =
γ′∂s/∂φ
γ′∂s/∂ζ

=
∂s/∂φ

∂s/∂ζ

is real. Thus p can be extended meromorphically over the ζ Riemann
sphere by defining it in the lower-half plane to be the complex conjugate
of the pullback under ζ → ζ. The fact that it is real for ζ ∈ R ensures
continuity and hence holomorphy there. It does, however, have simple
poles at ζ = 0,∞ as ∂

∂ζw has simple zeroes there. However, the chosen
form at ζ = 0 implies that in fact, p vanishes at ζ = 0. Thus, since p ∂

∂ζ
is globally holomorphic except a simple pole at ζ =∞ (as a vector field
on the Riemann sphere), zero at ζ = 0 and real for ζ real, we can write

p = ζ(Γ2ζ
2 + Γ1ζ + cotφ)

where Γ1 and Γ2 are real functions of φ and the cotφ follows from the
expansion at ζ = 0.

Note here that since w and s are even functions under φ → π − φ,
Γ2, Γ1 and cotφ are odd as they involve the φ derivatives of s.

We will need the fact later that Γ1 and Γ2 can be expressed in terms
of a(φ) and its first derivative by using the condition

q∗Ξ(ζ − a)|ζ=a = 0(24)

which follows from the fact that ζ = a corresponds to w = 1 which is a
holomorphic curve in CP2. This yields the equation

∂

∂φ
a+ a(Γ2a

2 + Γ1a+ cotφ) = 0

and this together with its complex conjugate yields

Γ2 =
sinφ
a− a

∂

∂φ

(
a− a
|a|2 sinφ

)
, Γ1 =

sinφ
a− a

(
a
∂

∂φ

(
1

a sinφ

)
− c.c.

)
.

(25)

The number of free functions here is two: either the pair Γ1 and Γ2 or,
equivalently, the real and imaginary parts of a. This is to be compared
to the one free function we have in the data of the curve γ(φ) in the
reduced twistor space and the second free function we have in choosing
the coordinate φ, which, up to now, has been arbitrary (at least away
from φ = 0, π/2). We will fix this coordinate freedom subsequently.
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2) The next step is to lift q∗Ξ to the vector field Ξ on the full
correspondence space PTS2 that annihilates also ξ or equivalently ξ̃.
We will have

Ξ = q∗Ξ− (q∗Ξξ)
∂θξ

∂

∂θ
= q∗Ξ− (q∗Ξξ)

iξ

∂

∂θ
= q∗Ξ + i(q∗Ξ log ξ)

∂

∂θ
.

In order to proceed further, note that the coefficient of ∂
∂θ is iq∗Ξ log ξ,

and this is (a) holomorphic over upper-half-plane in ζ, and (b) is real
for ζ ∈ R since the imaginary part of

iq∗Ξ log ξ|ζ=ζ = i
(
∂

∂φ
− ∂s/∂φ
∂s/∂ζ

∂

∂ζ

)
log ξ

is just q∗Ξ log |ξ| but log |ξ| = .e log Γ + .G is a function of ζ and
φ only through s, and such functions of s alone are annihilated by
q∗Ξ by construction. Thus, the imaginary part of the right hand side
of the above equation vanishes for ζ ∈ R. Hence, we can extend it
meromorphically over the ζ–Riemann sphere by setting it to be the
complex conjugate of the pullback under ζ → ζ for 'ζ < 0 and noting
that reality at ζ ∈ R implies continuity and hence holomorphy across
the real axis.

The function iq∗Ξ log ξ divides into two parts:

iq∗Ξ log ξ = iq∗ΞG(ζ, φ) + iq∗Ξ log Γ ,

and since w is constant along q∗Ξ, the second part reduces to

iq∗Ξ log Γ =
i

2
q∗Ξ log

1− ζ/a
1− ζ/a .

They are both holomorphic on the full ζ sphere, except with poles at
ζ = ∞ since q∗Ξ has one there. However, they will also have a simple
zero at ζ = 0 since the imaginary parts of G and the above expression for
iq∗Ξ log Γ vanish there by construction. (The possible apparent poles in
iq∗Ξ log Γ are removable as a consequence of Equation (24).) Therefore

iq∗ΞG =
F (φ)
sinφ

ζ , and iq∗Ξ log Γ = β(φ)ζ(26)

for some real functions F and β and the geodesic spray is

Ξ =
∂

∂φ
+
(
F

sinφ
+ β

)
ζ
∂

∂θ
− ζ(Γ2ζ

2 + Γ1ζ + cotφ)
∂

∂ζ
.
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Using the above and Equations (24) and (25) we calculate directly that

β = −Γ2'ma .

When φ ∈ [π/2, π] we should note first that G and Γ are even func-
tions under φ→ π − φ. Hence, F and β are, as defined, odd functions.
However, there is a further sign change on using ξ̃ instead of ξ for β
which yields an even contribution for β and odd for F and p, i.e., for
φ ∈ [π/2, π]

Ξ =
∂

∂φ
+
(
−F (π − φ)

sinφ
+ β(π − φ)

)
ζ
∂

∂θ
+ p(π − φ, ζ) ∂

∂ζ
.

We now fix the choice of the coordinate φ which up to now has been
arbitrary except near φ = 0 and π/2. We do this by imposing

'm1
a
= −| cosφ|

(note that a must always be in the upper half plane , and must be even
under φ→ π − φ). This gives

β = −1/ sinφ(27)

Introduce the function h(φ) by

.e1
a
= h| cosφ|

and this leads to the formulae

Γ1 = − ∂
∂φ
h+

2h
sinφ cosφ

, Γ2 = cotφ
(
1 + h2

)
.

This leads to our final formula for the geodesic spray

(28) Ξ =
∂

∂φ
+
F − 1
sinφ

ζ
∂

∂θ

−
(
(1 + ζ2 + ζ2h2) cotφ− ζ

(
∂h

∂φ
− 2h
sinφ cosφ

))
ζ
∂

∂ζ

where F must be odd under φ → π − φ and h must be even. For
regularity, h should vanish to second order at φ = π/2. From the
assumption that the twistor data was zero in some small neighborhood
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of the fixed line z0 = 0, we also deduce that the functions h and F should
vanish in some small neighborhood of φ = 0, π. This is the formula that
leads to the expressions given at the beginning of this appendix.
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